Brief Contents

PART I
Fundamentals of Physiology 1

1 Animals and Environments: Function on the Ecological Stage 3
2 Molecules and Cells in Animal Physiology 31
3 Genomics, Proteomics, and Related Approaches to Physiology 67
4 Physiological Development and Epigenetics 85
5 Transport of Solutes and Water 99

PART II
Food, Energy, and Temperature 125

6 Nutrition, Feeding, and Digestion 127
7 Energy Metabolism 161
8 Aerobic and Anaerobic Forms of Metabolism 183
9 The Energetics of Aerobic Activity 207
10 Thermal Relations 225
11 Food, Energy, and Temperature at Work: The Lives of Mammals in Frigid Places 277

PART III
Integrating Systems 293

12 Neurons 295
13 Synapses 327
14 Sensory Processes 359
15 Nervous System Organization and Biological Clocks 397
16 Endocrine and Neuroendocrine Physiology 419
17 Reproduction 455
18 Integrating Systems at Work: Animal Navigation 485

PART IV
Movement and Muscle 501

19 Control of Movement: The Motor Bases of Animal Behavior 503
20 Muscle 523
21 Movement and Muscle at Work: Plasticity in Response to Use and Disuse 549

PART V
Oxygen, Carbon Dioxide, and Internal Transport 567

22 Introduction to Oxygen and Carbon Dioxide Physiology 569
23 External Respiration: The Physiology of Breathing 583
24 Transport of Oxygen and Carbon Dioxide in Body Fluids (with an Introduction to Acid-Base Physiology) 617
25 Circulation 647
26 Oxygen, Carbon Dioxide, and Internal Transport at Work: Diving by Marine Mammals 679

PART VI
Water, Salts, and Excretion 697

27 Water and Salt Physiology: Introduction and Mechanisms 699
28 Water and Salt Physiology of Animals in Their Environments 717
29 Kidneys and Excretion (with Notes on Nitrogen Excretion) 753
30 Water, Salts, and Excretion at Work: Mammals of Deserts and Dry Savannas 787
CHAPTER 1
Animals and Environments: Function on the Ecological Stage 3

The Importance of Physiology 4
Mechanism and Origin: Physiology's Two Central Questions 5
The study of mechanism: How do modern-day animals carry out their functions? 5
The study of origin: Why do modern-day animals possess the mechanisms they do? 7
Natural selection is a key process of evolutionary origin 8
Mechanism and adaptive significance are distinct concepts that do not imply each other 8

This Book’s Approach to Physiology 10
Animals 11
The structural property of an animal that persists through time is its organization 11
Most cells of an animal are exposed to the internal environment, not the external environment 11
The internal environment may be permitted to vary when the external environment changes, or it may be kept constant 12

Homeostasis in the lives of animals: Internal constancy is often critical for proper function 12

BOX 1.1 Negative Feedback 13
Time in the lives of animals: Physiology changes in five time frames 14

BOX 1.2 The Evolution of Phenotypic Plasticity 16
Size in the lives of animals: Body size is one of an animal's most important traits 16

Environments 18
Earth's major physical and chemical environments 18
The environment an animal occupies is often a microenvironment or microclimate 22
Animals often modify their own environments 23

Evolutionary Processes 24
Some processes of evolution are adaptive, others are not 24
A trait is not an adaptation merely because it exists 25
Adaptation is studied as an empirical science 25
Evolutionary potential can be high or low, depending on available genetic variation 27

CHAPTER 2
Molecules and Cells in Animal Physiology 31

Cell Membranes and Intracellular Membranes 32
The lipids of membranes are structured, diverse, fluid, and responsive to some environmental factors 33
Proteins endow membranes with numerous functional capacities 35

BOX 2.1 Protein Structure and the Bonds That Maintain It 35
Carbohydrates play important roles in membranes 36

Epithelia 37
Elements of Metabolism 40
Enzyme Fundamentals 40
Enzyme-catalyzed reactions exhibit hyperbolic or sigmoid kinetics 42
Maximum reaction velocity is determined by the amount and catalytic effectiveness of an enzyme 43
Enzyme–substrate affinity affects reaction velocity at the substrate concentrations that are usual in cells 43
Enzymes undergo changes in molecular conformation and have specific binding sites that interact 44
Enzymes catalyze reversible reactions in both directions 45
Multiple molecular forms of enzymes occur at all levels of animal organization 46

Regulation of Cell Function by Enzymes 47
The types and amounts of enzymes present depend on gene expression and enzyme degradation 48
Modulation of existing enzyme molecules permits fast regulation of cell function 48

Evolution of Enzymes 52
Enzymes Are Instruments of Change in All Time Frames 54
The Life and Death of Proteins 54
Light and Color 55

BOX 2.2 Squid and Bioluminescent Bacteria, a Study in Cross-Phylum Coordination: The Euprymna scolopes–Vibrio fischeri Symbiosis
Margaret McFall-Ngai 57

Reception and Use of Signals by Cells 58
Extracellular signals initiate their effects by binding to receptor proteins 58
Cell signal transduction often entails sequences of amplifying effects 61
Several second-messenger systems participate in cell signal transduction 63

CHAPTER 3
Genomics, Proteomics, and Related Approaches to Physiology 67
Genomics 72
Genomics is inextricably linked with advanced methods of information processing 72
One overarching goal of genomics is to elucidate the evolution of genes and genomes 73
A second overarching goal of genomics is to elucidate the current functioning of genes and genomes 73
Genomes must ultimately be related empirically to phenotypes 74

Top-down versus Bottom-up Approaches to the Study of Physiology 75
Screening or Profiling as a Research Strategy 76
The Study of Gene Transcription: Transcriptomics 76
Transcription profiling often identifies large numbers of genes that exhibit altered transcription in response to environmental or other conditions 78

CHAPTER 4
Physiological Development and Epigenetics 85
The Physiology of Immature Animals Always Differs from That of Adults 86

Phenotypic Plasticity during Development 90
Environmental effects during development may arise from programmed responses to the environment or may be forced by chemical or physical necessity 91
Insect polyphenic development underlies some of the most dramatic cases of phenotypic plasticity 91

Epigenetics 93
Two major mechanisms of epigenetic marking are DNA methylation and covalent modification of histones 93
Epigenetic marking during an animal’s early development affects the animal’s lifelong phenotype 94
Epigenetic marks on paternal and maternal copies of genes set the stage in mammals and insects for the two copies to exert nonequivalent effects 95

CHAPTER 5
Transport of Solutes and Water 99
Passive Solute Transport by Simple Diffusion 101
Concentration gradients give rise to the most elementary form of simple solute diffusion 102
Electrical gradients often influence the diffusion of charged solutes at membranes 103
Biological aspects of diffusion across membranes: Some solutes dissolve in the membrane; others require channels 104
Diffusion of ions across cell membranes is determined by simultaneous concentration and electrical effects 105
Diffusion often creates challenges for cells and animals 105
Concentration gradients can create electrical gradients that alter concentration gradients 107

Passive Solute Transport by Facilitated Diffusion 108
Active Transport 108
Active transport and facilitated diffusion are types of carrier-mediated transport 109
Basic properties of active-transport mechanisms 109
Recognition of active transport completes our overview of a single animal cell 109
Primary and secondary active transport differ in their cellular-molecular mechanisms 110
PART II • Food, Energy, and Temperature

CHAPTER 6
Nutrition, Feeding, and Digestion 127

Nutrition 129
Proteins are “foremost” 129
Lipids are required for all membranes and are the principal storage compounds of animals 132
Carbohydrates are low in abundance in many animals but highly abundant when they play structural roles 133
Vitamins are essential organic compounds required in small amounts 134
Elemental nutrition: Many minerals are essential nutrients 134

Feeding 136
Many animals feed on organisms that are individually attacked and ingested 137
Suspension feeding is common in aquatic animals 139
Symbioses with microbes often play key roles in animal feeding and nutrition 141

BOX 6.1 Types of Meal Processing Systems 146
Digestion and Absorption 148

CHAPTER 7
Energy Metabolism 161

Why Animals Need Energy: The Second Law of Thermodynamics 161

Fundamentals of Animal Energetics 163
The forms of energy vary in their capacity for physiological work 163
Transformations of high-grade energy are always inefficient 163
Animals use energy to perform three major functions 164

BOX 7.1 Views on Animal Heat Production 165

Metabolic Rate: Meaning and Measurement 166

BOX 7.2 Units of Measure for Energy and Metabolic Rates 166
Direct calorimetry: The metabolic rate of an animal can be measured directly 167
Indirect calorimetry: Animal metabolic rates are usually measured indirectly 167

BOX 7.3 Direct Measurement versus Indirect Measurement 168

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
BOX 7.4 Respirometry 170
Factors That Affect Metabolic Rates 170
Ingestion of food causes metabolic rate to rise 170
Basal Metabolic Rate and Standard Metabolic Rate 172
Metabolic Scaling: The Relation between Metabolic
Rate and Body Size 172
Resting metabolic rate is an allometric function of body weight
in related species 173
The metabolic rate of active animals is often also an allometric
function of body weight 175
The metabolism–size relation has important physiological and
ecological implications 176
BOX 7.5 Scaling of Heart Function 177
The explanation for allometric metabolism–size relations
remains unknown 178
Energetics of Food and Growth 180
Conclusion: Energy as the Common Currency of
Life 181
POSTSCRIPT: The Energy Cost of Mental Effort 181

CHAPTER 8
Aerobic and Anaerobic Forms
of Metabolism 183
Mechanisms of ATP Production and Their
Implications 184
Aerobic catabolism consists of four major sets of reactions 184
BOX 8.1 Reactive Oxygen Species (ROS) 189
O₂ deficiency poses two biochemical challenges: Impaired ATP
synthesis and potential redox imbalance 189
Certain tissues possess anaerobic catabolic pathways that
synthesize ATP 190
Anaerobic glycolysis is the principal anaerobic catabolic pathway
of vertebrates 190
What happens to catabolic end products? 190
The functional roles of ATP-producing mechanisms depend on
whether they operate in steady state or nonsteady state 191
Phosphagens provide an additional mechanism of ATP
production without O₂ 192
Internal O₂ stores may be used to make ATP 192
Comparative Properties of Mechanisms of ATP
Production 193
Question 1: What is each mechanism's total possible ATP yield
per episode of use? 193
Question 2: How rapidly can each mechanism
be reinitialized? 194
Conclusion: All mechanisms have pros and cons 194
Two Themes in Exercise Physiology: Fatigue and
Muscle Fiber Types 194
Fatigue has many, context-dependent causes 194
The muscle fibers in the muscles used for locomotion are
heterogeneous in functional properties 195
The Interplay of Aerobic and Anaerobic Catabolism
during Exercise 196
Metabolic transitions occur at the start and end of vertebrate
exercise 196
The ATP source for all-out exercise varies in a regular manner
with exercise duration 198
Related species and individuals within one species are often
poised very differently for use of aerobic and anaerobic
catabolism 200
Responses to Impaired O₂ Influx from the
Environment 201
Air-breathing vertebrates during diving: Preserving the brain
presents special challenges 201
Animals faced with reduced O₂ availability in their usual
environments may show conformity or regulation of aerobic
ATP synthesis 202
Water-breathing anaerobes: Some aquatic animals are capable of
protracted life in water devoid of O₂ 202
BOX 8.3 Human Peak O₂ Consumption and Physical
Performance at High Altitudes 204

CHAPTER 9
The Energetics of Aerobic Activity 207
How Active Animals Are Studied 208
BOX 9.1 The Cost of Carrying Massive Loads 209
The Energy Costs of Defined Exercise 210
The Maximal Rate of Oxygen Consumption 215
BOX 9.2 Finding Power for Human-Powered
Aircraft 215
%VO₂max differs among phyletic groups and often from species to
species within a phyletic group 216
%VO₂max varies among individuals within a species 217
%VO₂max responds to training and selection 217
The Energetics of Routine and Extreme Daily Life 218
Long-Distance Migration 219
Ecological Energetics 220
BOX 9.3 Eel Migration and Energetics: A 2300-Year
Detective Story 221

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured
or disseminated in any form without express written permission from the publisher.
CHAPTER 10
Thermal Relations 225

Temperature and Heat 227
Heat Transfer between Animals and Their Environments 227

BOX 10.1 Global Warming 228
Conduction and convection: Convection is intrinsically faster 230
Evaporation: The change of water from liquid to gas carries much heat away 230
Thermal radiation permits widely spaced objects to exchange heat at the speed of light 231

Poikilothermy (Ectothermy) 233
Poikilotherms often exert behavioral control over their body temperatures 234
Poikilotherms must be able to function over a range of body temperatures 234
Poikilotherms respond physiologically to their environments in all three major time frames 234
Acute responses: Metabolic rate is an approximately exponential function of body temperature 235
Chronic responses: Acclimation often blunts metabolic responses to temperature 236
The rate–temperature relations and thermal limits of individuals: Ecological decline occurs at milder temperatures than acute stress 239
Evolutionary changes: Species are often specialized to live at their respective body temperatures 241
Temperature and heat matter to animals because they affect the rates of processes and the functional states of molecules 242
Poikilotherms threatened with freezing: They may survive by preventing freezing or by tolerating it 246

Homeothermy in Mammals and Birds 250

Mammals and birds in hot environments: Their first lines of defense are often not evaporative 260
Active evaporative cooling is the ultimate line of defense against overheating 261
Mammals and birds acclimatize to winter and summer 263
Evolutionary changes: Species are often specialized to live in their respective climates 264
Mammals and birds sometimes escape the demands of homeothermy by hibernation, torpor, or related processes 265

Warm-Bodied Fish 268

Endothermy and Homeothermy in Insects 270

The insects that thermoregulate during flight require certain flight-muscle temperatures to fly 271
Solitary insects employ diverse mechanisms of thermoregulation 272
Colonies of social bees and wasps often display sophisticated thermoregulation 273

Coda 273

BOX 10.3 Warm Flowers 273

CHAPTER 11
Food, Energy, and Temperature at Work: The Lives of Mammals in Frigid Places 277

Food, Nutrition, Energy Metabolism, and Thermoregulation in the Lives of Adult Reindeer 277

Newborn Reindeer 280

BOX 11.1 Knockout Mice Clarify the Function of Brown Fat 281
BOX 11.2 Genomics Confirms That Piglets Lack Brown Fat 282

The Future of Reindeer: Timing and Ice 283

Thermoregulatory Development: Small Mammals Compared with Large 283

The Effect of Body Size on Mammals’ Lives in Cold Environments: An Overview 284

Hibernation as a Winter Strategy: New Directions and Discoveries 285

Arctic ground squirrels supercool during hibernation and arouse periodically throughout their hibernation season 286
The composition of the lipids consumed before hibernation affects the dynamics of hibernation 286
Although periodic arousals detract from the energy savings of hibernation, their function is unknown 288
The intersection of sociobiology and hibernation physiology 289

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
PART III • Integrating Systems

CHAPTER 12

Neurons 295

The Physiology of Control: Neurons and Endocrine Cells Compared 295

Neurons transmit electrical signals to target cells 296
Endocrine cells broadcast hormones 297
Nervous systems and endocrine systems tend to control different processes 298

Neurons Are Organized into Functional Circuits in Nervous Systems 298

The Cellular Organization of Neural Tissue 299

Neurons are structurally adapted to transmit action potentials 299
Glial cells support neurons physically and metabolically 300

The Ionic Basis of Membrane Potentials 301

Cell membranes have passive electrical properties: Resistance and capacitance 302
Resting membrane potentials depend on selective permeability to ions: The Nernst equation 305
Ion concentration differences result from active ion transport and from passive diffusion 306
Membrane potentials depend on the permeabilities to and concentration gradients of several ion species: The Goldman equation 308
Electrogenic pumps also have a small direct effect on V_m 308

The Action Potential 309

Action potentials are voltage-dependent, all-or-none electrical signals 309
Action potentials result from changes in membrane permeabilities to ions 310

The molecular structure of the voltage-dependent ion channels reveals their functional properties 315
There are variations in the ionic mechanisms of excitable cells 316

BOX 12.1 Evolution and Molecular Function of Voltage-Gated Channels 317
BOX 12.2 Optogenetics: Controlling Cells with Light Matthew S. Kayser 318

The Propagation of Action Potentials 320

Local circuits of current propagate an action potential 320
Membrane refractory periods prevent bidirectional propagation 320
The conduction velocity of an action potential depends on axon diameter, myelination, and temperature 322

BOX 12.3 Giant Axons 322

CHAPTER 13

Synapses 327

Synaptic Transmission Is Usually Chemical but Can Be Electrical 328

Electrical synapses transmit signals instantaneously 329
Chemical synapses can modify and amplify signals 329

Synaptic Potentials Control Neuronal Excitability 332

Synapses onto a spinal motor neuron exemplify functions of fast synaptic potentials 332
Synapses excite or inhibit a neuron by depolarization or hyperpolarization at the site of impulse initiation 332

Fast Chemical Synaptic Actions Are Exemplified by the Vertebrate Neuromuscular Junction 333

Chemical synapses work by releasing and responding to neurotransmitters 335
Postsynaptic potentials result from permeability changes that are neurotransmitter-dependent and voltage-independent 335
EPSPs between neurons resemble neuromuscular EPSPs but are smaller 336
Fast IPSPs can result from an increase in permeability to chloride 337

Presynaptic Neurons Release Neurotransmitter Molecules in Quantal Packets 337

Acetylcholine is synthesized and stored in the presynaptic terminal 338
Neurotransmitter release requires voltage-dependent Ca^{2+} influx 338
Neurotransmitter release is quantal and vesicular 338
Synaptic vesicles are cycled at nerve terminals in distinct steps 339
Several proteins play roles in vesicular release and recycling 340
Contents

Neurotransmitters Are of Two General Kinds 341

- Neurons have one or more characteristic neurotransmitters 342
- An agent is identified as a neurotransmitter if it meets several criteria 342
- Vertebrate neurotransmitters have several general modes of action 343
- Neurotransmitter systems have been conserved in evolution 344

Postsynaptic Receptors for Fast Ionotropic Actions: Ligand-Gated Channels 345

- ACh receptors are ligand-gated channels that function as ionotropic receptors 345
- Many, but not all, ligand-gated channel receptors have evolved from a common ancestor 347

Postsynaptic Receptors for Slow, Metabotropic Actions: G Protein–Coupled Receptors 347

- G protein–coupled receptors initiate signal transduction cascades 347
- Metabotropic receptors act via second messengers 347
- Other mechanisms of G protein–mediated activity 349
- G protein–coupled receptors mediate permeability-decrease synaptic potentials and presynaptic inhibition 350

Synaptic Plasticity: Synapses Change Properties with Time and Activity 350

- Neurotransmitter metabolism is regulated homeostatically 351
- Learning and memory may be based on synaptic plasticity 351
- Habituation and sensitization in Aplysia 351
- Long-term potentiation in the hippocampus 353

BOX 13.1 Synapse Formation: Competing Philosophies Matthew S. Kayser 356

- Long-term potentiation is a necessary component of learning 356

CHAPTER 14

Sensory Processes 359

Organization of Sensory Systems 360

- Sensory receptor cells can be classified in four different ways 360
- Sensory receptor cells transduce and encode sensory information 361

Mechanoreception and Touch 362

- Insect bristle sensilla exemplify mechanoreceptor responses 362
- Touch receptors in the skin of mammals have specialized endings 364
- Proprioceptors monitor internal mechanical stimuli 365

Vestibular Organs and Hearing 366

- Insects hear with tympanal organs 366
- Vertebrate hair cells are used in hearing and vestibular sense 366
- Vertebrate vestibular organs sense acceleration and gravity 368

- Sound stimuli create movements in the vertebrate cochlea that excite auditory hair cells 369
- The localization of sound is determined by analysis of auditory signals in the CNS 372

BOX 14.1 Echolocation 373

Chemoreception and Taste 373

- Insect taste is localized at chemoreceptive sensilla 373
- Taste in mammals is mediated by receptor cells in taste buds 374

Olfaction 377

- The mammalian olfactory epithelium contains odor generalist receptor cells 378
- The vomeronasal organ of mammals detects pheromones 380

Photoreception 381

- Photoreceptor cells and eyes of different groups have evolved similarities and differences 382
- Rhodopsin consists of retinal conjugated to opsin, a G protein–coupled receptor 382
- Phototransduction in Drosophila leads to a depolarizing receptor potential 382
- The vertebrate eye focuses light onto retinal rods and cones 385
- Rods and cones of the retina transduce light into a hyperpolarizing receptor potential 386
- Enzymatic regeneration of rhodopsin is slow 388

Visual Sensory Processing 389

- Retinal neurons respond to contrast 389
- The vertebrate brain integrates visual information through parallel pathways 392

BOX 14.2 What roles do individual neurons play in higher visual integration? 394

- Color vision is accomplished by populations of photoreceptors that contain different photopigments 394

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CHAPTER 15
Nervous System Organization and Biological Clocks 397

The Organization and Evolution of Nervous Systems 398
Nervous systems consist of neurons organized into functional circuits 398
Many types of animals have evolved complex nervous systems 398

BOX 15.1 Evolution of Nervous Systems 399

The Vertebrate Nervous System: A Guide to the General Organizational Features of Nervous Systems 401
Nervous systems have central and peripheral divisions 401
The central nervous system controls physiology and behavior 401
Five principles of functional organization apply to all mammalian and most vertebrate brains 402

BOX 15.2 Functional Magnetic Resonance Imaging Scott A. Huettel 405

The peripheral nervous system has somatic and autonomic divisions that control different parts of the body 405
The autonomic nervous system has three divisions 406

Biological Clocks 410
Organisms have endogenous rhythms 410

BOX 15.3 Sleep David S. Garbe 411
Biological clocks generate endogenous rhythms 412
Control by biological clocks has adaptive advantages 412
Endogenous clocks correlate with natural history and compensate for temperature 413
Clock mechanisms are based on rhythms of gene expression 414
The loci of biological clock functions vary among animals 415
Circannual and circatidal clocks: Some endogenous clocks time annual or tidal rhythms 416
Interval, or “hourglass,” timers can time shorter intervals 416

CHAPTER 16
Endocrine and Neuroendocrine Physiology 419

Introduction to Endocrine Principles 420
Hormones bind to receptor molecules expressed by target cells 421
Concentrations of hormones in the blood vary 421
Most hormones fall into three chemical classes 421
Hormone molecules exert their effects by producing biochemical changes in target cells 423

Synthesis, Storage, and Release of Hormones 425
Peptide hormones are synthesized at ribosomes, stored in vesicles, and secreted on demand 425
Steroid hormones are synthesized on demand prior to secretion, and are released into the blood by diffusion 426

Types of Endocrine Glands and Cells 426

Control of Endocrine Secretion: The Vertebrate Pituitary Gland 427
The posterior pituitary illustrates neural control of neurosecretory cells 427
The anterior pituitary illustrates neurosecretory control of endocrine cells 428
Hormones and neural input modulate endocrine control pathways 430

The Mammalian Stress Response 432
The autonomic nervous system and HPA axis coordinate the stress response to an acute threat 433
The HPA axis modulates the immune system 434
Chronic stress causes deleterious effects 435
Plasma glucocorticoid concentrations show seasonal variations 436

Endocrine Control of Nutrient Metabolism in Mammals 436
Insulin regulates short-term changes in nutrient availability 436
Glucagon works together with insulin to ensure stable levels of glucose in the blood 437
Other hormones contribute to the regulation of nutrient metabolism 439

Endocrine Control of Salt and Water Balance in Vertebrates 439
Antidiuretic hormones conserve water 439
The renin–angiotensin–aldosterone system conserves sodium 440
Atrial natriuretic peptide promotes excretion of sodium and water 442

Endocrine Control of Calcium Metabolism in Mammals 442
Parathyroid hormone increases Ca2+ in the blood 442
Active vitamin D increases Ca2+ and phosphate in the blood 442
Calcitonin opposes bone resorption and decreases Ca2+ and phosphate in the blood 443

Endocrine Principles in Review 444

Chemical Signals along a Distance Continuum 444

BOX 16.1 Can Mating Cause True Commitment? 445
Paracines and autocrines are local chemical signals distributed by diffusion 446

BOX 16.2 Hormones and Neuromodulators Influence Behavior 447
CHAPTER 19
Control of Movement: The Motor Bases of Animal Behavior 503

Neural Control of Skeletal Muscle Is the Basis of Animal Behavior 503

Invertebrate neural circuits involve fewer neurons than vertebrate circuits 504
Vertebrate spinal reflexes compensate for circumstances, as well as initiate movements 504

BOX 19.1 Muscle Spindles 505
Motor neurons are activated primarily by central input rather than by spinal reflexes 507

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Neural Generation of Rhythmic Behavior 509
- Locust flight results from an interplay of central and peripheral control 509
- There are different mechanisms of central pattern generation 510
- Central pattern generators can underlie relatively complex behavior 513

Control and Coordination of Vertebrate Movement 514
- Locomotion in cats involves a spinal central pattern generator 515
- Central pattern generators are distributed and interacting 515
- The generation of movement involves several areas in the vertebrate brain 516

BOX 19.2 Basal Ganglia and Neurodegenerative Diseases 521

CHAPTER 20
Muscle 523

Vertebrate Skeletal Muscle Cells 524
- Thick and thin filaments are polarized polymers of individual protein molecules 526
- Muscles require ATP to contract 527
- Calcium and the regulatory proteins tropomyosin and troponin control contractions 528

Excitation–Contraction Coupling 529

Whole Skeletal Muscles 531
- Muscle contraction is the force generated by a muscle during cross-bridge activity 531
- A twitch is the mechanical response of a muscle to a single action potential 532
- The velocity of shortening decreases as the load increases 532
- The frequency of action potentials determines the tension developed by a muscle 532
- A sustained high calcium concentration in the cytoplasm permits summation and tetanus 533
- The amount of tension developed by a muscle depends on the length of the muscle at the time it is stimulated 534
- In general, the amount of work a muscle can do depends on its volume 535

BOX 20.1 Electric Fish Exploit Modified Skeletal Muscles to Generate Electric Shocks 536

Muscle Energetics 536
- ATP is the immediate source of energy for powering muscle contraction 536
- Vertebrate muscle fibers are classified into different types 537

BOX 20.2 Insect Flight 539

Neural Control of Skeletal Muscle 540
- The vertebrate plan is based on muscles organized into motor units 540

The innervation of vertebrate tonic muscle is intermediate between the general vertebrate and arthropod plans 540
- The arthropod plan is based on multiterminal innervation of each muscle fiber by more than one neuron 540

Vertebrate Smooth (Unstriated) Muscle 542
- Smooth muscle cells are broadly classified 542
- Ca²⁺ availability controls smooth muscle contraction by myosin-linked regulation 543
- Most smooth muscles are innervated by the autonomic nervous system 545

Vertebrate Cardiac Muscle 545

CHAPTER 21
Movement and Muscle at Work: Plasticity in Response to Use and Disuse 549

Muscle Phenotypes 550
- Power output determines a muscle’s contractile performance, and changes in response to use and disuse 551
- Endurance training elicits changes in fiber type, increased capillary density, and increased mitochondrial density 551
- Resistance training causes hypertrophy and changes in fiber type 555
- Hypertrophy also occurs in cardiac muscles 557

Atrophy 559
- Humans experience atrophy in microgravity 559
- Disuse influences the fiber-type composition of muscles 560
- Muscles atrophy with age 560
- Some animals experience little or no disuse atrophy 561

BOX 21.1 No Time to Lose 562

Regulating Muscle Mass 563
- Myostatin 563
- The PI3-K–Akt1 pathway 564

Summary 565

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
PART V • Oxygen, Carbon Dioxide, and Internal Transport

CHAPTER 22
Introduction to Oxygen and Carbon Dioxide Physiology 569

The Properties of Gases in Gas Mixtures and Aqueous Solutions 570
Gases in the gas phase 570
Gases in aqueous solution 571

Diffusion of Gases 572
Gases diffuse far more readily through gas phases than through aqueous solutions 574
Gas molecules that combine chemically with other molecules cease to contribute to the gas partial pressure 574

BOX 22.1 Diffusion through Tissues Can Meet O2 Requirements over Distances of Only 1 Millimeter or Less 575

Convective Transport of Gases: Bulk Flow 575

BOX 22.2 Induction of Internal Flow by Ambient Currents 576
Gas transport in animals often occurs by alternating convection and diffusion 576

The Oxygen Cascade 577

Expressing the Amounts and Partial Pressures of Gases in Other Units 578

The Contrasting Physical Properties of Air and Water 579

Respiratory Environments 580

CHAPTER 23
External Respiration: The Physiology of Breathing 583

Fundamental Concepts of External Respiration 584

Principles of Gas Exchange by Active Ventilation 585
The O2 partial pressure in blood leaving a breathing organ depends on the spatial relation between the flow of the blood and the flow of the air or water 585
The relative changes in the partial pressures of O2 and CO2 depend dramatically on whether air or water is breathed 587

Introduction to Vertebrate Breathing 588

Breathing by Fish 590
Gill ventilation is usually driven by buccal–opercular pumping 592
Many fish use ram ventilation on occasion, and some use it all the time 593
Decreased O2 and exercise are the major stimuli for increased ventilation in fish 593
Several hundred species of bony fish are able to breathe air 593

Breathing by Amphibians 594
Gills, lungs, and skin are used in various combinations to achieve gas exchange 595

Breathing by Reptiles Other than Birds 596

Breathing by Mammals 597
The total lung volume is employed in different ways in different sorts of breathing 598
The gas in the final airways differs from atmospheric air in composition and is motionless 599
The power for ventilation is developed by the diaphragm and the intercostal and abdominal muscles 599
The control of ventilation 600

BOX 23.1 Low O2: Detection and Response 601

BOX 23.2 Mammals at High Altitude (with Notes on High-Flying Birds) 602
In species of different sizes, lung volume tends to be a constant proportion of body size, but breathing frequency varies allometrically 604
Pulmonary surfactant keeps the alveoli from collapsing 604

Breathing by Birds 605
Ventilation is by bellows action 606
Air flows unidirectionally through the parabronchi 606
The gas-exchange system is cross-current 608

BOX 23.3 Bird Development: Filling the Lungs with Air Before Hatching 608

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Breathing by Aquatic Invertebrates and Allied Groups 608
Molluscs exemplify an exceptional diversity of breathing organs built on a common plan 608
Decapod crustaceans include many important water breathers and some air breathers 610

Breathing by Insects and Other Tracheate Arthropods 611

BOX 23.4 The Book Lungs of Arachnids 612
Diffusion is a key mechanism of gas transport through the tracheal system 612
Some insects employ conspicuous ventilation 613
Microscopic ventilation is far more common than believed even a decade ago 614
Control of breathing 614
Aquatic insects breathe sometimes from the water, sometimes from the atmosphere, and sometimes from both 615

CHAPTER 24
Transport of Oxygen and Carbon Dioxide in Body Fluids (with an Introduction to Acid-Base Physiology) 617

The Chemical Properties and Distributions of the Respiratory Pigments 618
BOX 24.1 Absorption Spectra of Respiratory Pigments 619
Hemoglobins contain heme and are the most widespread respiratory pigments 619
BOX 24.2 Blood Cells and Their Production 622
Copper-based hemocyanins occur in many arthropods and molluscs 622
Chlorocruorins resemble hemoglobins and occur in certain annelids 623
Iron-based hemerythrins do not contain heme and occur in three or four phyla 623

The O₂-Binding Characteristics of Respiratory Pigments 623
Human O₂ transport provides an instructive case study 624
A set of general principles helps elucidate O₂ transport by respiratory pigments 627
The shape of the oxygen equilibrium curve depends on O₂-binding site cooperativity 627
Respiratory pigments exhibit a wide range of affinities for O₂ 628
The Bohr effect: Oxygen affinity depends on the partial pressure of CO₂ and the pH 629
The Root effect: In unusual cases, CO₂ and pH dramatically affect the oxygen-carrying capacity of the respiratory pigment 631
Thermal effects: Oxygen affinity depends on tissue temperature 631
Organic modulators often exert chronic effects on oxygen affinity 631

BOX 24.3 The Challenges of Regional Hypothermia and the Resurrection of Mammoth Hemoglobin 632
Inorganic ions may also act as modulators of respiratory pigments 633

The Functions of Respiratory Pigments in Animals 633
BOX 24.4 Heme-Containing Globins in Intracellular Function: Myoglobin Regulatory and Protective Roles, Neuroglobins, and Cytoglobins 634
Patterns of circulatory O₂ transport: The mammalian model is common but not universal 635
Respiratory pigments within a single individual often display differences in O₂ affinity that aid successful O₂ transport 636
Evolutionary adaptation: Respiratory pigments are molecules positioned directly at the interface between animal and environment 636
The respiratory-pigment physiology of individuals undergoes acclimation and acclimatization 637
Icefish live without hemoglobin 638

Carbon Dioxide Transport 638
BOX 24.5 Blood and Circulation in Mammals at High Altitude 639
The extent of bicarbonate formation depends on blood buffers 640
Carbon dioxide transport is interpreted by use of carbon dioxide equilibrium curves 640
The Haldane effect: The carbon dioxide equilibrium curve depends on blood oxygenation 641
Critical details of vertebrate CO₂ transport depend on carbonic anhydrase and anion transporters 642

Acid–Base Physiology 643
Acid–base regulation involves excretion or retention of chemical forms affecting H⁺ concentration 644
Disturbances of acid–base regulation fall into respiratory and metabolic categories 644

CHAPTER 25
Circulation 647

Hearts 648
The heart as a pump: The action of a heart can be analyzed in terms of the physics of pumping 649
The circulation must deliver O₂ to the myocardium 649
The electrical impulses for heart contraction may originate in muscle cells or neurons 650
A heart produces an electrical signature, the electrocardiogram 653
Heart action is modulated by hormonal, nervous, and intrinsic controls 653

Principles of Pressure, Resistance, and Flow in Vascular Systems 655
The rate of blood flow depends on differences in blood pressure and on vascular resistance.

The dissipation of energy: Pressure and flow turn to heat during circulation of the blood.

Circulation in Mammals and Birds
The circulatory system is closed.
Each part of the systemic vascular system has distinctive anatomical and functional features.
Mammals and birds have a high-pressure systemic circuit.
Fluid undergoes complex patterns of exchange across the walls of systemic capillaries.
The pulmonary circuit is a comparatively low-pressure system that helps keep the lungs "dry.
During exercise, blood flow is increased by orchestrated changes in cardiac output and vascular resistance.
Species have evolved differences in their circulatory physiology.

Circulation in Fish
The circulatory plans of fish with air-breathing organs (ABOs) pose unresolved questions.
Lungfish have specializations to promote separation of oxygenated and deoxygenated blood.

Circulation in Amphibians and in Reptiles Other than Birds
BOX 25.1 An Incompletely Divided Central Circulation Can Potentially Be an Advantage for Intermittent Breathers.

Concluding Comments on Vertebrates

Invertebrates with Closed Circulatory Systems

Invertebrates with Open Circulatory Systems
The crustacean circulatory system provides an example of an open system.
Open systems are functionally different from closed systems but may be equal in critical ways.

BOX 25.3 Circulation and O2: Lessons from the Insect World.

CHAPTER 26
Oxygen, Carbon Dioxide, and Internal Transport at Work: Diving by Marine Mammals

Diving Feats and Behavior
Types of Dives and the Importance of Method
Physiology: The Big Picture
The Oxygen Stores of Divers
The blood O2 store tends to be large in diving mammals.
Diving mammals have high myoglobin concentrations and large myoglobin-bound O2 stores.
Diving mammals vary in their use of the lungs as an O2 store.
Total O2 stores never permit dives of maximum duration to be fully aerobic.

Circulatory Adjustments during Dives
Regional vasoconstriction: Much of a diving mammal’s body is cut off from blood flow during forced or protracted dives.
Diving bradycardia matches cardiac output to the circulatory task.
Cardiovascular responses are graded in freely diving animals.

BOX 26.1 The Evolution of Vertebrate Cardiac and Vascular Responses to Asphyxia
Red blood cells are removed from the blood between dive sequences in some seals.

Metabolism during Dives
The body becomes metabolically subdivided during forced or protracted dives.
Metabolic limits on dive duration are determined by O2 supplies, by rates of metabolic O2 use and lactic acid production, and by tissue tolerances.

The Aerobic Dive Limit: One of Physiology’s Key Benchmarks for Understanding Diving Behavior
Marine mammals exploit multiple means of reducing their metabolic costs while under water.

Decompression Sickness
Human decompression sickness is usually caused by N2 absorption from a compressed-air source.
Breath-hold dives must be repeated many times to cause decompression sickness in humans.
Marine mammals have been thought—perhaps erroneously—to avoid decompression sickness during deep dives by alveolar collapse.
Decompression sickness is an unresolved phenomenon.

A Possible Advantage for Pulmonary O2 Sequestration in Deep Dives

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
PART VI • Water, Salts, and Excretion

CHAPTER 27
Water and Salt Physiology: Introduction and Mechanisms 699
The Importance of Animal Body Fluids 700
The Relationships among Body Fluids 701
Types of Regulation and Conformity 701
Natural Aquatic Environments 703
Natural Terrestrial Environments 705
Organs of Blood Regulation 707
The osmotic U/P ratio is an index of the action of the kidneys in osmotic regulation 707
The effects of kidney function on volume regulation depend on the amount of urine produced 708
The effects of kidney function on ionic regulation depend on ionic U/P ratios 709
Food and Drinking Water 709
Salty drinking water may not provide H2O 709
Plants and algae with salty tissue fluids pose challenges for herbivores 710
Air-dried foods contain water 710
Protein-rich foods can be dehydrating for terrestrial animals 710
Metabolic Water 710
Metabolic water matters most in animals that conserve water effectively 711
BOX 27.1 Net Metabolic Water Gain in Kangaroo Rats 711
Cell-Volume Regulation 712
From Osmolytes to Compatible Solutes: Terms and Concepts 714

CHAPTER 28
Water and Salt Physiology of Animals in Their Environments 717
Animals in Freshwater 717
Passive water and ion exchanges: Freshwater animals tend to gain water by osmosis and lose major ions by diffusion 718
Most types of freshwater animals share similar regulatory mechanisms 719
BOX 28.1 Fish Mitochondria-Rich Cells and Their Diversity 723
A few types of freshwater animals exhibit exceptional patterns of regulation 723
Why do most freshwater animals make dilute urine? 724
Animals in the Ocean 724
Most marine invertebrates are isosmotic to seawater 725
Hagfish are the only vertebrates with blood inorganic ion concentrations that make them isosmotic to seawater 725
The marine teleost fish are markedly hyposmotic to seawater 725
BOX 28.2 Where Were Vertebrates at Their Start? 726
BOX 28.3 Epithelial NaCl Secretion in Gills, Salt Glands, and Rectal Glands 728
Some arthropods of saline waters are hyposmotic regulators 729
Marine reptiles (including birds) and mammals are also hyposmotic regulators 729
Marine elasmobranch fish are hyperosmotic but hypoionic to seawater 731
BOX 28.4 The Evolution of Urea Synthesis in Vertebrates 732
Animals That Face Changes in Salinity 733
Migratory fish and other euryhaline fish are dramatic and scientifically important examples of hyper-hyposmotic regulators 734
Animals undergo change in all time frames in their relations to ambient salinity 735
Responses to Drying of the Habitat in Aquatic Animals 736
Animals on Land: Fundamental Physiological Principles 737
BOX 28.5 Anhydrobiosis: Life as Nothing More than a Morphological State 737
A low integumentary permeability to water is a key to reducing evaporative water loss on land 738
Respiratory evaporative water loss depends on the function of the breathing organs and the rate of metabolism 739
An animal's total rate of evaporative water loss depends on its body size and phylogenetic group. Excretory water loss depends on the concentrating ability of the excretory organs and the amount of solute that needs to be excreted. Terrestrial animals sometimes enter dormancy or tolerate wide departures from homeostasis to cope with water stress. The total rates of water turnover of free-living terrestrial animals follow allometric patterns.

Animals on Land: Case Studies

Amphibians occupy diverse habitats despite their meager physiological abilities to limit water losses. Xeric invertebrates: Because of exquisite water conservation, some insects and arachnids have only small water needs.

BOX 28.6 The Study of Physiological Evolution by Artificial Selection

Xeric vertebrates: Studies of lizards and small mammals help clarify the complexities of desert existence. Xeric vertebrates: Desert birds are again a new frontier for research.

Control of Water and Salt Balance in Terrestrial Animals

CHAPTER 29

Kidneys and Excretion (with Notes on Nitrogen Excretion)

Basic Mechanisms of Kidney Function

Primary urine is introduced into kidney tubules by ultrafiltration or secretion. The predominant regulatory processes in kidney function: After primary urine forms, solutes and water are recovered from it for return to the blood, and some solutes are added from the blood.

Urine Formation in Amphibians

The proximal convoluted tubule reabsorbs much of the filtrate—returning it to the blood plasma—without changing the osmotic pressure of the tubular fluid. The distal convoluted tubule can differentially reabsorb water and solutes, thereby regulating the ratio of water to solutes in the body fluids.

BOX 29.1 Quantity versus Concentration

BOX 29.2 Methods of Study of Kidney Function: Micropuncture and Clearance

ADH exerts an elaborate pattern of control over nephron function. The bladder functions in urine formation in amphibians. The amphibian excretory system has mechanisms to promote excretion of urea.

Urine Formation in Mammals

The nephrons, singly and collectively, give the mammalian kidney a distinctive structure.

Comparative anatomy points to a role for the loops of Henle in concentrating the urine. Countercurrent multiplication is the key to producing concentrated urine.

BOX 29.3 Countercurrent Multipliers versus Countercurrent Exchangers

The regulatory roles of the kidney tubules in overview: the concentrating and diluting kidney and the control of transitions. Modern molecular methods create new frontiers in the study of kidney function.

Urine Formation in Other Vertebrates

Freshwater and marine teleost fish differ in nephron structure and function. The reptiles other than birds have nephrons like those of amphibians, but birds have some mammalian-type nephrons.

Urine Formation in Decapod Crustaceans

Urine Formation in Molluscs

Urine Formation in Insects

The Malpighian tubules form and sometimes modify the primary urine. The hindgut modulates urine volume and composition in regulatory ways.

Nitrogen Disposition and Excretion

Ammonotelism is the primitive state. Urea is more costly to synthesize but less toxic than ammonia. Uric acid and related compounds remove nitrogen from solution.

BOX 29.4 Why Are Mammals Not Uricotelic?

CHAPTER 30

Water, Salts, and Excretion at Work: Mammals of Deserts and Dry Savannas

Desert and Dry-Savanna Environments

The Relations of Animals to Water

Large body size is a physiological advantage in terms of water costs. Coexisting species are diverse in their relations to drinking water. Water conflicts threaten animals and people. All species of large herbivores require considerable amounts of preformed water. Water and food resources in the deserts and dry savannas are often complex.

The Dramatic Adaptations of Particular Species

Oryxes represent the pinnacle of desert survival.

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Grant’s and Thomson’s gazelles differ in their relations to water 798
The sand gazelle is drinking-water-independent in hyperarid deserts 798
The dromedary camel does not store water, but conserves it and tolerates profound dehydration 799

APPENDIX A
The Système International and Other Units of Measure A-2

APPENDIX B
Prefixes Indicating Orders of Magnitude A-4

APPENDIX C
Gases at Standard Temperature and Pressure A-5

APPENDIX D
Fitting Lines to Data A-6

APPENDIX E
Logarithms A-8

APPENDIX F
Exponential and Allometric Equations A-10

APPENDIX G
Phylogenetically Independent Contrasts A-12

APPENDIX H
Mitosis and Meiosis A-15

APPENDIX I
The Standard Amino Acids A-18

APPENDIX J
Basic Physics Terms A-19

APPENDIX K
Summary of Major Bloodborne Hormones in Mammals A-21

Glossary G-1

Photograph Credits C-1

Figure and Table Citations F-1

Additional References R-1

Index I-1

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.