Brief Contents

PART 1 Environmental Signals and Normal Development

CHAPTER 1 The Environment as a Normal Agent in Producing Phenotypes
CHAPTER 2 How Agents in the Environment Effect Molecular Changes in Development
CHAPTER 3 Developmental Symbiosis: Co-Development as a Strategy for Life
CHAPTER 4 Embryonic Defenses: Survival in a Hostile World

PART 2 Ecological Developmental Biology and Disease States

CHAPTER 5 Teratogenesis: Environmental Assaults on Development
CHAPTER 6 Endocrine Disruptors
CHAPTER 7 The Epigenetic Origin of Adult Diseases

PART 3 Toward a Developmental Evolutionary Synthesis

CHAPTER 8 The Modern Synthesis: Natural Selection of Allelic Variation
CHAPTER 9 Evolution through Developmental Regulatory Genes
CHAPTER 10 Environment, Development, and Evolution: Toward a New Synthesis

CODA Philosophical Concerns Raised by Ecological Developmental Biology

APPENDIX A Lysenko, Kammerer, and the Truncated Tradition of Ecological Developmental Biology
APPENDIX B The Molecular Mechanisms of Epigenetic Change
APPENDIX C Writing Development Out of the Modern Synthesis
APPENDIX D Epigenetic Inheritance Systems: The Inheritance of Environmentally Induced Traits

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Contents

PART 1 Environmental Signals and Normal Development

CHAPTER 1 The Environment as a Normal Agent in Producing Phenotypes 3

- **Plasticity Is a Normal Part of Development** 6
 - BONELLA VIRIDIS: WHEN THE ENVIRONMENT DETERMINES SEX 6
 - A century of studies 7
 - A contextually integrated view of life 8
- **“Eco-Devo” and Developmental Plasticity** 9
 - Reaction norms and polyphenisms 11
 - Epigenetics 12
 - Agents of developmental plasticity 13
- **Temperature-Dependent Phenotypes** 13
 - Enzyme activity as a function of temperature 13
 - Seasonal polyphenism in butterflies 16
 - Temperature and sex 17
- **Nutritional Polyphenism: What You Eat Becomes You** 20
 - Royal jelly and egg-laying queens 20
 - Horn length in the male dung beetle 21
- **Gravity and Pressure** 23
- **Predator-Induced Polyphenisms** 26
 - Predator-induced polyphenism in invertebrates 27
 - Predator-induced polyphenism in vertebrates 27
- **The Presence of Con specifics: It’s Who You Know** 29
 - A swarm of locusts: Polyphenism through touch 30
- **POLYPHENISMS AND CONSERVATION BIOLOGY** 31
 - Sexual polyphenism by the community environment 32
- **Convergence on Favorable Phenotypes** 32
- **Summary** 32
- **References** 33

CHAPTER 2 How Agents in the Environment Effect Molecular Changes in Development 37

- **Regulation of Gene Transcription** 38
 - Differential gene expression 38
 - DNA methylation 42
 - Environmental agents and direct DNA methylation 43
 - The effects of maternal behavior on gene methylation 44
- **Signal Transduction from Environment to Genome via the Neuroendocrine System** 46
 - VERNALIZATION: TEMPERATURE-DEPENDENT CHROMATIN CHANGES 47
 - Neuroendocrine regulation of temperature-dependent polyphenism in insects 49
 - Neuroendocrine regulation of sex determination 51
- **SEX, AROMATASE, AND CONSERVATION BIOLOGY** 54
 - An extreme phenotype for extreme times: Stress and cannibalism 57
 - “We will pump you up”: Muscle hypertrophy 59
- **ANABOLIC STEROIDS** 62
- **Signal Transmission from Environment to Genome through Direct Induction** 64
 - Microbial induction of gene expression in vertebrate intestines 64
 - Microbial induction of the vertebrate immune response 65
- **Transgenerational Effects** 67
 - Transgenerational polyphenism in locusts 68
 - Transgenerational predator-induced polyphenisms 68
 - Methylation and transgenerational continuity: Toadflax 70
 - Methylation and transgenerational continuity: Mice and rats 71
- **Summary** 74
- **References** 74

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CHAPTER 3 Developmental Symbiosis: Co-Development as a Strategy for Life
Symbiosis: An Overview
The “Grand” Symbioses
Nitrogen-fixing nodules
ENDOPHYTES
Mycorrhizae
Life Cycle Symbioses
THE LARGE BLUE BUTTERFLY
Getting Symbionts Together with Their Hosts
The Squid and the Microbe: A Paradigm of Symbiont Influence
Evolution of the Symbiotic Regulation of Development: Wolbachia
Sex determination by infection
Evolution of dependence on Wolbachia for sexual development
MUTUALISTIC CONSORTIA
The Mutualistic Bacteria of the Mammalian Gut
Introduction to the gut microbiota
Maintaining the gut microbial community: The biofilm model
Inheritance of the gut bacteria
Gut Bacteria and Normal Mammalian Development
An important role for symbiotic bacteria in the normal development of the host’s gut:
Angiogenesis induction
The impact of symbiotic gut bacteria on the development of the host immune system:
Antimicrobial secretions
IMMUNITY THROUGH DEVELOPMENTAL SYMBIOSIS
B lymphocytes and the GALT
IMMUNE SYSTEM CELL TYPES
Gut Bacteria Symbiosis and Human Health
Bacterial regulation of the immune response
The role of the gut bacteria in fat storage:
Implications for human obesity
Further implications of the enteric gut bacteria for human health
Summary
References

CHAPTER 4 Embryonic Defenses: Survival in a Hostile World
Characteristics of Embryo Defense
Developmental robustness: A necessary but paradoxical defense
Early embryonic cells differ from adult cells
SPECULATIONS ON CELL DEFENSES IN EARLY DEVELOPMENT
Strategies for Embryo Defense
Strategy 1: Induced polyphenism
Strategy 2: Parental protection
Strategy 3: Dormancy and diapause
THE DAUERLARVA OF C. ELEGANS
Strategy 4: Defense physiologies
A general strategy: “Be prepared”
Mechanisms of Embryo Defense
Protection against Toxic Substances
The general plan: “Bouncers,” “chemists,” and “policemen”
Toxic metals
Problems with metal detoxification
Protection against Physical Damage
Shells and extracellular coats
Cytoplasmic sealing
Protection against Oxidative Damage
Protection against Damage to DNA
Sunscreens prevent DNA damage
Repairing damaged DNA
Protection against Pathogens
Parental behavior
Chemical protection
Embryonic immune responses
Symbiosis and protection from fungi
Protection from Predation
Summary
References
PART 2 Ecological Developmental Biology and Disease States

CHAPTER 5 Teratogenesis: Environmental Assaults on Development 167

Medical Embryology and Teratology 168
 Wilson’s principles of teratology 169
 Thalidomide and the window of susceptibility 170
Teratogenic Agents 172
 Chemical teratogens: Industrial mercury and Minamata disease 172
 Alcohol as a teratogen 173
 Retinoic acid 180
TERATOGENS AND COGNITIVE FUNCTION 182
 Other teratogenic agents 183
Natural Killers: Teratogens from Plants 185
 Veratrum alkaloids 185
 Plant juvenile hormones 187
Deformed Frogs: A Teratological Enigma 189
 A combination of factors 189
 The radiation hypothesis 190
 Pesticides and herbicides 190
CONSERVATION BIOLOGY: SAVING THE FROGS 191
Summary 191
References 192

CHAPTER 6 Endocrine Disruptors 197

The Nature of Endocrine Disruptors 198
 The endocrine disruptor hypothesis 199
 DDT: The start of it all 200
 ESTABLISHING A CHAIN OF CAUSATION 202
Estrogen and Endocrine Disruptors 203
 The structure and mechanisms of estrogen receptors 204
 Diethylstilbestrol 206
 Mechanisms of DES action 208
 Soy estrogens 212
 Declining sperm counts and testicular dysgenesis syndrome 213
 Pesticides and infertility in males 215
SENSITIVITY TO DISRUPTION: A GENETIC COMPONENT 216
 Atrazine, again 217
Plastics and Plasticity 220
 Bisphenol A 221
 The dose-response curve of BPA action 225
 The molecular biology of the BPA effect 226
 Epigenetic effects of BPA 228
 Polychlorinated biphenyls 229
 Possible mechanisms for the effects of PCBs 230
Transgenerational Effects of Endocrine Disruptors 230
Summary 233
REGULATORY AND POLICY DECISIONS ON BPA AND OTHER ENDOCRINE DISRUPTORS 234
References 237

CHAPTER 7 The Epigenetic Origin of Adult Diseases 245

The Developmental Origins of Health and Disease 246
Instructing the Fetus 247
 Maternal-fetal co-development 248
 Fetal plasticity in humans 250
 Gene methylation and the fetal phenotype 253
Predictive Adaptive Responses 256
 The environmental mismatch hypothesis 260
 Environment-genotype interactions in diabetes 263
PATERNAL EPIGENETIC EFFECTS 264
Developmental Plasticity and Public Health 266
Aging and Cancer as Diseases of Epigenesis 267
Epigenetic Methylation, Disease, and Aging 267
 Evidence from identical twins 268
 Aging and random epigenetic drift 270
Epigenetic Origins of Cancer 273
 Cancer as caused by altered epigenetic methylation 274
 The reciprocity of epigenetic and genetic causation in cancer 277
 The tissue organization field hypothesis 278
Summary 283
References 283
PART 3 Toward a Developmental Evolutionary Synthesis

CHAPTER 8 The Modern Synthesis: Natural Selection of Allelic Variation 289

Charles Darwin’s Synthesis 291
- Classical Darwinism: Natural selection 292
- Selection for Heritable Plasticity 299
- Embryology and Darwin’s synthesis 299
- The failure of developmental morphology to explain evolution 303

The Modern Synthesis 304

STURTEVANT ON SNAILS 305

The Triumph of the Modern Synthesis: The Globin Paradigm 310
- Hemoglobin S and sickle-cell disease 311
- Malaria and Evolution 312
- Favism 316

Summary 318

References 320

CHAPTER 9 Evolution through Developmental Regulatory Genes 323

The Origins of Evolutionary Developmental Biology 324

Molecular Parsimony: “Toolkit Genes” 326
- Duplication and divergence: The Hox genes 327
- Homologous pathways of development 332
- Toolkit genes and evolution: A summary 334

Modularity: Divergence through Dissociation 336
- Enhancer modularity 337
- Malaria, again 341

Mechanisms of Macroevolutionary Change 342
- Heterotopy 342
- Heterochrony 344
- Heterometry 345
- Heterotypy 350

Speciation 354
- Speciation in the Modern Synthesis 354
- Regulatory RNAs may help make us human 356

Developmental Constraints on Evolution 358
- Physical constraints 358
- Morphogenetic constraints 359
- Phylogenetic constraints 359
- Reaction-Diffusion Models 360

Summary 362

References 363

CHAPTER 10 Environment, Development, and Evolution: Toward a New Synthesis 369

Epigenetic Inheritance Systems 370

Heterocyberny: Plasticity-Driven Adaptation 372

Phenocopies and Ecotypes 373

Genetic Assimilation 375
- Genetic assimilation in the laboratory 377
- Genetic assimilation in nature: Mechanisms, models, and inferences 379
- Thresholds of Genetic Assimilation 380
- Genetic assimilation and natural selection 381
- Epigenetic Assimilation: Another Hsp90 Story 383

Genetic Accommodation 384

Phenotypic Accommodation 386
- Evolutionary considerations 387
- Developmental mechanisms of phenotypic accommodation 389
- Reciprocal accommodation 390

Niche Construction 391

Summary: Eco-Evo-Devo 395

References 398

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CODA Philosophical Concerns Raised by Ecological Developmental Biology 403

Ontology 404
What is an “individual” in terms of its developmental and ecological history? 404
What is an “individual” in terms of its developmental and evolutionary history? 405
Integrative philosophical traditions 408
Emergence 410

Pedagogy 411

Epistemology and Methodology 412
How we study development 412
How we study evolution and ecology 414

Ethics and Policy 415

Ethics for the Anthropocene 417

References 418

APPENDIX A Lysenko, Kammerer, and the Truncated Tradition of Ecological Developmental Biology 421

APPENDIX B The Molecular Mechanisms of Epigenetic Change 433

APPENDIX C Writing Development Out of the Modern Synthesis 441

APPENDIX D Epigenetic Inheritance Systems: The Inheritance of Environmentally Induced Traits 447

Opening Plate Credits 460

Index 462