Brief Contents

PART I Major Issues That Define the Discipline 1
 1 What Is Conservation Biology? 3
 2 What Is Biological Diversity? 23
 3 Where Is the World's Biological Diversity Found? 51

PART II Valuing Biodiversity 69
 4 Ecological Economics and Direct Use Values 71
 5 Indirect Use Value 91
 6 Ethical Values 115

PART III Threats to Biological Diversity 131
 7 Extinction 133
 8 Vulnerability to Extinction 155
 9 Habitat Destruction, Fragmentation, Degradation, and Global Climate Change 173
 10 Overexploitation, Invasive Species, and Disease 215

PART IV Conservation at the Population and Species Levels 245
 11 Problems of Small Populations 247
 12 Applied Population Biology 273
 13 Establishing New Populations 295
 14 Ex Situ Conservation Strategies 313

PART V Practical Applications 339
 15 Establishing Protected Areas 341
 16 Designing Networks of Protected Areas 367
 17 Managing Protected Areas 389
 18 Conservation Outside Protected Areas 415
 19 Restoration Ecology 437

PART VI Conservation and Human Societies 459
 20 Conservation and Sustainable Development at the Local and National Levels 461
 21 An International Approach to Conservation and Sustainable Development 493
 22 An Agenda for the Future 523
Contents

PART I Major Issues That Define the Discipline 1

CHAPTER 1 What Is Conservation Biology? 3

- The New Science of Conservation Biology 5
- Conservation Biology Complements the Traditional Disciplines 6
- Conservation Biology Is a Crisis Discipline 7
- Conservation Biology’s Ethical Principles 7
- **BOX 1.1** Conservation Biology’s Interdisciplinary Approach: A Case Study with Sea Turtles 8
- The Origins of Conservation Biology 11
- European Origins 13
- American Origins 16
- A New Science Is Born 19
- Conservation Biology: A Dynamic and Growing Field 19

CHAPTER 2 What Is Biological Diversity? 23

- Species Diversity 24
 - What Is a Species? 25
 - **BOX 2.1** Naming and Classifying Species 27
 - The Origin of New Species 29
 - Measuring Species Diversity 30
- Genetic Diversity 33
- Ecosystem Diversity 36
 - What Are Communities and Ecosystems? 36
- **BOX 2.2** Kelp Forests and Sea Otters: Shaping an Ocean Ecosystem 37
- Ecological Succession 39
- Species Interactions within Ecosystems 40
- Principles of Community Organization 40
- Keystone Species and Guilds 44
- Keystone Resources 47
- Ecosystem Dynamics 48
- Conclusion 49

CHAPTER 3 Where Is the World’s Biological Diversity Found? 51

- Two of the Most Diverse Ecosystems on Earth 52
 - Tropical Rain Forests 53
 - Coral Reefs 53
- Patterns of Diversity 54
 - Variation in Climate and Environment 54
 - Variation in Topography, Geological Age, and Habitat Size 55
- Why Are There So Many Species in the Tropics? 56
- How Many Species Exist Worldwide? 58
 - New Species Are Being Discovered All the Time 58
- Recently Discovered Communities 60
 - **BOX 3.1** Conserving a World Unknown: Hydrothermal Vents and Oil Plumes 62
- Diversity Surveys: Collecting and Counting Species 62
- Estimating the Number of Species 63
- The Need for More Taxonomists 66
PART II Valuing Biodiversity 69

CHAPTER 4 Ecological Economics and Direct Use Values 71
Why Economic Valuation Is Needed 72
Evaluating Development Projects 74
Cost-Benefit Analysis 74
Natural Resource Loss and the Wealth of Societies 76

BOX 4.1 Industry, Ecology, and Ecotourism in Yellowstone Park 79

Assigning Economic Value to Biological Diversity 80
Direct Use Values 81
Consumptive Use Value 81
Productive Use Value 84
Multiple Uses of a Single Resource: A Case Study 87

CHAPTER 5 Indirect Use Value 91
Nonconsumptive Use Value 91
Ecosystem Productivity and Carbon Sequestration 93
Protection of Water and Soil Resources 94

BOX 5.1 Prophecy Fulfilled: How Ecosystem Services Became Front Page News 96
Waste Treatment and Nutrient Retention 98
Climate Regulation 98
Species Relationships 99

BOX 5.2 How Much Are Bats Worth? A Case Study of Texas Bats 100

Environmental Monitors 101
Recreation and Ecotourism 101
Educational and Scientific Value 104

The Long-Term View: Option Value 104
BOX 5.3 Mighty Multitudes of Microbes: Not to Be Ignored! 106

Existence Value 109
Is Economic Valuation Enough? 111

CHAPTER 6 Ethical Values 115
Ethical Values of Biological Diversity 116

BOX 6.1 Sharks: A Feared Animal in Decline 118

Ethical Arguments for Preserving Biological Diversity 117

BOX 6.2 Religion and Conservation 122

Enlightened Self-Interest: Biodiversity and Human Development 124
Deep Ecology 126

PART III Threats to Biological Diversity 131

CHAPTER 7 Extinction 133
Past Mass Extinctions 134
The Current, Human-Caused Mass Extinction 136
Background Extinction Rates 141
Extinction Rates on Islands 141
Extinction Rates in Aquatic Environments 142

BOX 7.1 Invasive Species and Extinction in Island Ecosystems 143

Estimating Extinction Rates with the Island Biogeography Model 145
Extinction Rates and Habitat Loss 147
Assumptions and Generalizations in the Island Biogeography Model 149
Time to Extinction 149
Local Extinctions 150
CHAPTER 8 **Vulnerability to Extinction** 155
Endemic Species and Extinction 156
Species Most Vulnerable to Extinction 158
BOX 8.1 Why Are Frogs and Toads Croaking? 163
Conservation Categories 165
Natural Heritage Data Centers 169

CHAPTER 9 **Habitat Destruction, Fragmentation, Degradation, and Global Climate Change** 173
Human Population Growth and Its Impact 174
Habitat Destruction 177
Threatened Rain Forests 180
Other Threatened Habitats 184
Marine Coastal Areas 185
Desertification 187
Habitat Fragmentation 189
Edge Effects 193
Two Studies of Habitat Fragmentation 195
Habitat Degradation and Pollution 196
Pesticide Pollution 197
BOX 9.1 Pesticides and Raptors: Sentinel Species Warn of Danger 198
Water Pollution 198
Air Pollution 201
Global Climate Change 204
Changes in Temperate and Tropical Climates 208
Plants and Climate Change 209
Rising Sea Levels and Warmer Waters 209
The Overall Effect of Global Warming 211

CHAPTER 10 **Overexploitation, Invasive Species, and Disease** 215
Overexploitation 215
Exploitation in the Modern World 217
International Wildlife Trade 218
BOX 10.1 Endangered Whales: Making a Comeback? 220
Commercial Harvesting 224
What Can Be Done to Stop Overexploitation? 225
Invasive Species 226
Invasive Species on Islands 228
BOX 10.2 GMOs and Conservation Biology 230
Invasive Species in Aquatic Habitats 232
The Ability of Species to Become Invasive 234
Control of Invasive Species 236
Disease 237
Implications of Invasive Species and Diseases for Human Health 241
Conclusion 242

PART IV **Conservation at the Population and Species Levels** 245

CHAPTER 11 **Problems of Small Populations** 247
Essential Concepts for Small Populations 248
Minimum Viable Population (MVP) 248
Loss of Genetic Variability 250
Consequences of Reduced Genetic Variability 254
Factors That Determine Effective Population Size 257
BOX 11.1 Rhino Species in Asia and Africa: Genetic Diversity and Habitat Loss 262
Other Factors That Affect the Persistence of Small Populations 264
Demographic Variation 264
Environmental Variation and Catastrophes 266
Extinction Vortices 268
CHAPTER 12 Applied Population Biology 273
Methods for Studying Populations 275
Gathering Ecological Information 275
Monitoring Populations 276
BOX 12.1 Three Primatologists Who Became Activists 279
Population Viability Analysis 285
Metapopulations 287
Long-Term Monitoring of Species and Ecosystems 290

CHAPTER 13 Establishing New Populations 295
Three Approaches to Establishing New Populations 296
BOX 13.1 Wolves Return to a Cold Welcome 297
Successful Programs with Animals 299
Learned Behavior of Released Animals 302
Establishing New Plant Populations 305
The Status of New Populations 309

CHAPTER 14 Ex Situ Conservation Strategies 313
Ex Situ Conservation Facilities 316
Zoos 316
BOX 14.1 Love Alone Cannot Save the Giant Panda 317
Aquariums 326
Botanical Gardens and Arboreums 328
Seed Banks 330
BOX 14.2 Seed Savers and Crop Varieties 333
Conclusion 336

PART V Practical Applications 339

CHAPTER 15 Establishing Protected Areas 341
Establishment and Classification of Protected Areas 342
Existing Protected Areas 343
Marine Protected Areas 345
BOX 15.1 The Phoenix Islands Protected Area: The World’s Largest Marine Park 346
The Effectiveness of Protected Areas 347
Creating New Protected Areas 349
Prioritization: What Should Be Protected? 351
Determining Which Areas Should Be Protected 352
Linking New Protected Areas to Reserve Networks 360
Gap Analysis 361

CHAPTER 16 Designing Networks of Protected Areas 367
Issues of Reserve Design 368
Protected Area Size and Characteristics 369
Reserve Design and Species Preservation 373
Minimizing Edge and Fragmentation Effects 374
Networks of Protected Areas 375
Habitat Corridors 375
BOX 16.1 Ecologists and Real Estate Experts Mingle at The Nature Conservancy 377
Habitat Corridor Case Studies 380
Landscape Ecology and Park Design 382
Conclusion 386
CHAPTER 17 Managing Protected Areas 389

Monitoring as a Management Tool 392
Identifying and Managing Threats 394
Managing Invasive Species 394
Managing Habitat 396

BOX 17.1 Habitat Management: The Key to Success in the Conservation of Endangered Butterflies 397

Managing Water 399
Managing Keystone Resources 401

CHAPTER 18 Conservation Outside Protected Areas 415

The Value of Unprotected Habitat 417
Conservation in Urban Areas 420

BOX 18.1 In Defense of Wildlife . . . Send in the Soldiers 421

Conservation in Agricultural Areas 423
Multiple Use Habitat 425

CHAPTER 19 Restoration Ecology 437

Damage and Restoration 439

BOX 19.1 Can Many Small Projects Clean Up the Chesapeake Bay? 441

Ecological Restoration Techniques 442

Practical Considerations 443
Case Studies 445

Wetlands Restoration in Japan 445
The Grand Canyon–Colorado River Ecosystem 445

Restoration in Urban Areas 445
Restoration of Some Major Communities 447

Wetlands 447

BOX 19.2 The Kissimmee River: Restoring a Channelized River to Its Natural State 448

Lakes 449
Prairies 451
Tropical Dry Forest in Costa Rica 453

The Future of Restoration Ecology 455
PART VI Conservation and Human Societies 459

CHAPTER 20 Conservation and Sustainable Development at the Local and National Levels 461

Conservation at the Local Level 463
 Land Trusts 463
 BOX 20.1 How Clean Is “Green” Energy? 465
 Local Legislation 467

Conservation at the National Level 469
 National Legislation 469
 The U.S. Endangered Species Act 471

Traditional Societies, Conservation, and Sustainable Use 477

Conservation Beliefs 478
Conservation Efforts That Involve Traditional Societies 480

BOX 20.2 People-Friendly Conservation in the Hills of Southwest India: Successes and Failures 485
Evaluating Conservation Initiatives That Involve Traditional Societies 489

CHAPTER 21 An International Approach to Conservation and Sustainable Development 493

International Agreements to Protect Species 495
 BOX 21.1 The War for the Elephant: Is the Armistice Over? 497

International Agreements to Protect Habitat 499

International Earth Summits 502

Funding for Conservation 506

The Role of International Development Banks 509

Reforming Development Lending 511

BOX 21.2 How Much Will the Three Gorges Dam Really Cost? 512

Funding Sources and Programs 515
 National Environmental Funds 516
 Debt-for-Nature Swaps 517
 Marine Environments 518

How Effective Is Conservation Funding? 518
 Increased Funding Is Necessary for the Future 519

CHAPTER 22 An Agenda for the Future 523

Ongoing Problems and Possible Solutions 524
 BOX 22.1 Conservation Education: Shaping the Next Generation into Conservationists 525

The Role of Conservation Biologists 531

Challenges for Conservation Biologists 531
 BOX 22.2 Environmental Activism Confronts the Opposition 532
 Achieving the Agenda 533

Appendix 539

Chapter Opener Photograph Credits 543

Glossary 545

Bibliography 553

Index 587