FUNCTIONAL
Magnetic Resonance Imaging
SECOND EDITION

Scott A. Huettel
Brain Imaging and Analysis Center, Duke University

Allen W. Song
Brain Imaging and Analysis Center, Duke University

Gregory McCarthy
Yale University

Sinauer Associates, Inc • Publishers
Sunderland, Massachusetts U.S.A.
Brief Contents

1 An Introduction to fMRI 1
2 MRI Scanners 31
3 Basic Principles of MR Signal Generation 57
4 Basic Principles of MR Image Formation 89
5 MR Contrast Mechanisms and Pulse Sequences 121
6 From Neuronal to Hemodynamic Activity 159
7 BOLD fMRI: Origins and Properties 193
8 Signal, Noise, and Preprocessing of fMRI Data 243
9 Experimental Design 293
10 Statistical Analysis: Basic Analyses 331
11 Statistical Analysis II: Advanced Approaches 377
12 Advanced fMRI Methods 419
13 Combining fMRI with other Techniques 443
14 The Future of fMRI: Practical and Ethical Issues 485
Contents

1 An Introduction to fMRI

What Is fMRI? 3
 Measurement versus manipulation techniques 4
 Box 1.1 What Is fMRI Used For? 6
 Key concept: contrast 9
 Key concept: resolution 11

History of fMRI 15
 Early studies of magnetic resonance 15
 NMR in bulk matter: Bloch and Purcell 17
 The first MR images 18
 Growth of MRI 21
 Box 1.2 The Nobel Controversy: Scanners or Images? 22

Organization of the Textbook 24
 Physical bases of fMRI 25
 Principles of BOLD fMRI 25
 Design and analysis of fMRI experiments 26
 Applications and future directions 27

Summary 28

Suggested Reading 28

Chapter References 29

2 MRI Scanners

How MRI Scanners Work 31
 Static magnetic field 32
 Radiofrequency coils 35
 Gradient coils 38
 Shimming coils 41
 Computer hardware and software 41
 Experimental control system 43
 Physiological monitoring equipment 43

MRI Safety 44
 Effects of static magnetic fields on human physiology 44
 Box 2.1 Outline of an fMRI Experiment 45
 Translation and torsion 49
 Gradient magnetic field effects 50
 Radiofrequency field effects 52
 Claustrophobia 53
 Acoustic noise 54

Summary 54

Suggested Reading 55

Chapter References 55
Basic Principles of MR Signal Generation

CONCEPTUAL PATH 57
- Nuclear Spins 59
- Spins in an External Magnetic Field 60
- Magnetization of a Spin System 62
- Excitation of a Spin System and Signal Reception 64
- Relaxation Mechanisms of the MR Signal 65
- Conceptual Summary of MR Signal Generation 67

QUANTITATIVE PATH 68
- Common Terms and Notations 68
- Nuclear Spins 69
- Magnetic Moment 69
- Angular Momentum 70
- Spins in an External Magnetic Field 71
 - Spin precession 71
- Energy Difference between Parallel and Antiparallel States 74
- Magnetization of a Spin System 75
- Excitation of a Spin System and Signal Reception 77
 - Spin excitation 78
 - Box 3.1 A Quantitative Consideration of the Rotating Reference Frame 80
- Relaxation Mechanisms of a Spin System 85
- The Bloch Equation for MR signal generation 87
- Summary 87
- Suggested Reading 88

Basic Principles of MR Image Formation 89

CONCEPTUAL PATH 90
- Slice Selection 91
- Frequency Encoding 93
- Phase Encoding 95
- Conceptual Path: Summary of Image Formation 96

QUANTITATIVE PATH 97
- Analysis of the MR Signal 97
 - Box 4.1 An Example of Spatial Encoding 98
 - Longitudinal magnetization (M_z) 101
 - Solution for transverse magnetization (M_xy) 102
 - The MR signal equation 105
- Slice Selection, Spatial Encoding, and Image Reconstruction 106
 - Slice selection 106
 - Two-dimensional spatial encoding (frequency and phase encoding) 109
 - Relationship between image space and k-space 113
 - Converting from k-space to image space 114
- 3-D Imaging 117
- Potential Problems in Image Formation 117
- Summary 120
- Suggested Reading 120

MR Contrast Mechanisms and Pulse Sequences 121

Static Contrasts and Related Pulse Sequences 122
- Proton-density contrast 123
- T_1 contrast 126
- T_2 contrast 129
- T_2* contrast 131
- Chemical contrast 132
- Macromolecular contrast 133

Motion Contrasts 135
- MR angiography 135
- Diffusion-weighted contrast 138
 - Box 5.1 Diffusion Tensor Imaging 140
- Perfusion-weighted contrast 142
Fast Imaging Sequences for fMRI 147
- Echo-planar imaging 147
- Spiral imaging 148
- Signal recovery and distortion correction for EPI and spiral images 152

Summary 154
Suggested Reading 156
Chapter References 157

6 From Neuronal to Hemodynamic Activity 159

Neuronal Activity 160
- Ion channels in neurons 162
- Neurotransmitters and action potentials 163

Cerebral Metabolism: Neuronal Energy Consumption 165
- Adenosine triphosphate (ATP) 166

The Vascular System of the Brain 168
- Arteries, capillaries, and veins 170
- Arterial and venous anatomy of the human brain 171
- Microcirculation 172

Blood Flow 174
- Control of blood flow 175
- Box 6.1 Neurovascular Coupling and Control of Blood Flow 176
- Effects of increased blood flow on capillaries 179
- Box 6.2 Primer on Neuroanatomy 182

Summary 190
Suggested Reading 190
Chapter References 191

7 BOLD fMRI: Origins and Properties 193

History of BOLD fMRI 193
- Discovery of BOLD contrast 194
- The coupling of metabolism and blood flow 196
- Box 7.1 PET Imaging 197

The Growth of BOLD fMRI 201
- Contributing factors 201
- Early fMRI studies 203
- Box 7.2 Functional Studies Using Contrast Agents 204

The BOLD Hemodynamic Response 208
- Box 7.3 Neuronal Activity and BOLD fMRI 209
- The initial dip 211

Spatial Resolution 214
- Spatial specificity in the vascular system 216
- What spatial resolution is needed? 219

Temporal Resolution of fMRI 220
- What temporal resolution is needed? 223
- Effects of stimulus duration and timing 225

Linearity of the Hemodynamic Response 229
- Properties of a linear system 230
- Evidence for rough linearity 231
- Challenges to linearity 233
- fMRI-adaptation 235

Summary 237
Suggested Reading 238
Chapter References 239

8 Signal, Noise, and Preprocessing of fMRI Data 243

Understanding Signal and Noise 245
- Signal and noise defined 245
- Box 8.1 Terminology of fMRI 246
- Functional SNR 248

Effects of Field Strength on fMRI Data 250
- Field strength and raw SNR 251
- Field strength and spatial properties of activation 252
- Challenges of high-field fMRI 254
Sources of Noise in fMRI 255
Thermal noise 256
System noise 258
Motion and physiological noise 259
Non-task-related neural variability 262
Behavioral and cognitive variability in task performance 262
Box 8.2 Variability in the Hemodynamic Response over Subjects and Sessions 264

Preprocessing 267
Quality assurance 267
Slice acquisition time correction 269
Head motion: an overview 271
Prevention of head motion 274
Correction of head motion 276
Distortion correction 277

Functional–Structural Coregistration and Normalization 280
Functional–structural coregistration 280
Spatial normalization 281

Temporal and Spatial Filtering 284
Temporal filtering 285
Spatial filtering 287

Summary 289
Suggested Reading 289
Chapter References 290

Experimental Design 293
Basic Principles of Experimental Design 294
Setting Up a Good Research Hypothesis 296
Are fMRI data correlational? 298
Confounding factors 299
Good Practices in fMRI Experimental Design 302
Blocked Designs 303
Setting up a blocked design 304
Box 9.1 Baseline Activation in fMRI 306
Advantages and disadvantages of blocked designs 310
Event-Related Designs 313

Principles of event-related fMRI 316
Advantages of event-related designs 319
Box 9.2 Efficient fMRI Experimental Design 320
Mixed Designs 325
Summary 327
Suggested Reading 327
Chapter References 328

Statistical Analysis: Basic Analyses 331
Basic Statistical Tests 333
Contrasting experimental conditions: the t-test 334
Comparing experimental and predicted responses: correlation analyses 338
Box 10.1 Identifying Task-Related Periodicity: Fourier Analyses 341

Regression Analyses 343
The general linear model: an overview 343
Constructing a design matrix: regressors of interest 345
Constructing a design matrix: nuisance regressors 349
Modeling neuronal activity 351
Modeling hemodynamic convolution 352
Contrasts 354
Assumptions of the general linear model 356

Corrections for Multiple Comparisons 357
Calculating the significance threshold 358
Thresholding based on clusters of activation 360
Estimating the number of independent tests 361

Region-of-Interest Analyses 362
Intersubject Analyses 365
Group and parametric effects 367
Displaying Statistical Results 369
Summary 373
Suggested Reading 373
Chapter References 374
Statistical Analysis II: Advanced Approaches 377

Data Exploration Approaches 378
- Principal components analysis (PCA) 378
- Independent components analysis (ICA) 380
- Partial least squares (PLS) 382

Between-Subjects Correlations: Hyperscanning 384

Functional Connectivity Approaches 386
- From coactivation to connectivity: a conceptual overview 386
- box 11.1 intersubject correlations in free viewing 387
- Resting-state connectivity 391
- Psychophysiological interactions 393
- Inferring causality from fMRI data 394
- Combining fMRI and DTI 399

Prediction Approaches 401
- Predicting variation among individuals 402
- box 11.2 real-time fMRI 403
- Predicting variation in behavior 407
- Pattern classification using machine learning algorithms 408
- Capabilities and challenges of fMRI pattern classification 412

Summary 415

Suggested Reading 416

Chapter References 416

Advanced fMRI Methods 419

Improved Spatial Resolution 420
- MR microscopy 420
- Parallel imaging 423
- Parallel imaging with massive coil arrays 425

Improved Temporal Resolution 426
- Multiple-channel acquisition 427
- Partial k-space imaging 427
- Efficient k-space trajectories 430
- Improved experimental designs 432

Improved Functional Resolution through New Contrast Mechanisms 433
- Temperature-dependent contrast 434
- pH-dependent contrast 435
- Ion-gated contrast 437
- Neuronal magnetic field contrast 438
- Lorentz effect contrast 439

Summary 440

Suggested Reading 441

Chapter References 441

Combining fMRI with other Techniques 443

Cognitive Neuroscience 443
- Strategies for research in cognitive neuroscience 445

Manipulating Brain Function 446
- Direct cortical stimulation 446
- Functional consequences of direct cortical stimulation 448
- Transcranial magnetic stimulation (TMS) 450
- Brain lesions 452
- Combined lesion and fMRI studies 454
- Probabilistic brain atlases 455
- Brain imaging and genomics 457

Measuring Brain Function 458
- Single-unit recording 458
- Box 13.1 electrogensis 459
- Limitations of single-unit recording 462
- Properties of electrical field potentials 464
- Localizing the neural generators of field potentials 465

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.