Human Perception of Objects

Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity

David Regan
York University, Toronto
University of Toronto
Contents

CHAPTER 1
How Do We See Objects? Conceptualizing the Question and Tackling It 1

Was the Evolution of Our Visual System Driven by the Evolution of Natural Camouflage? 2

The Organization of This Book 4

Visually Guided Goal-Directed Action 6

Psychophysical Methods and Psychophysical Models 8

Psychophysical methods and data 8

Information 23

Class A and Class B observations 25

Psychophysics is not physiology: Mathematical versus structural models of a system 26

The “sets of filters” hypothesis 30

Rationale for the sets of filters hypothesis 33

Modularity 35

Evidence for quasi-independent processing 35

Opponent processing 36

“Regional binding” and “boundary detection” models 39

Inter-Observer Variability and Classification Schemes 40

Disordered Vision 42

Spatial Discriminations, Hyperacuities, and Impostors 44

Figural Aftereffects 48
CHAPTER 2
Luminance-Defined Form 65

Preamble 65

Detection of Luminance Spatial Contrast and the
Contrast Sensitivity Function for Luminance-Defined Form 66

Detection of a nonrepetitive local stimulus 66
Detection of the spatial periodicity of a static grating 67

Effects of temporal frequency on grating contrast sensitivity I:
Foveal vision 71

Effects of temporal frequency on grating contrast sensitivity II:
Peripheral vision 74

Channels for Luminance-Defined Form and Contrast Gain Control 75

Adaptation, masking, and other evidence for channels 75

The “dipper” effect 91
Demodulation 93

Positional Discrimination, Width Discrimination, Separation
Discrimination, and Spatial Frequency Discrimination for Luminance-
Defined Form 98

Positional discrimination: Vernier acuity and bisection acuity 98
Bar width discrimination and bar separation discrimination 107
Spatial-frequency discrimination 108

Orientation Discrimination, Angle Discrimination, and Curvature Discrimination 115

Orientation discrimination for luminance-defined form 115
Discrimination of implicit orientation 123
Angles 131
Curvature 135

Psychophysical Models of the Processing of
Luminance-Defined Form along One Dimension 140

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
“Heterochromatic flicker photometry”: A candidate procedure for silencing the achromatic system 220
The “minimally distinct border”: A candidate procedure for silencing the achromatic system 223
“Minimal motion”: A candidate procedure for silencing the achromatic system 223
Do all methods of measuring luminance give the same result? 224
“The titration method”: A candidate procedure for silencing the achromatic system 224
The effect of temporal frequency on the sensitivities of the chromatic and achromatic systems 228
Temporal summation characteristics for the chromatic and achromatic systems: Bloch’s law for color and for luminance 233
The titration method used to determine the contrast sensitivity of the chromatic contrast system 234
But what if our model is wrong? 237
Detection of Color-Defined Form: Contrast Sensitivity Functions for Color-Defined Form 245
Channels for Color-Defined Form 250
Orientation Discrimination for Color-Defined Form 253
Positional Discrimination, Width Discrimination, Separation Discrimination, and Spatial Frequency Discrimination for Color-Defined Form 255
Positional discrimination 255
Bar width and bar separation discrimination 255
Spatial frequency discrimination 256
Aspect Ratio Discrimination for Two-Dimensional Color-Defined Form 256
Disordered Processing of Color-Defined Form in Patients 256
Psychophysical Models of the Processing of Color-Defined Form 258
Models based on an achromatic contrast system with a Vλ spectral sensitivity 259
Models framed in terms of two or more parallel spatial filters sensitive to monochromatic contrast 262

CHAPTER 4
Texture-Defined Form 267
Preamble 267
CHAPTER 5

Motion-Defined Form 295

Preamble 295

Helmholtz 295

Two kinds of visual information caused by self-motion, each of which can be used in two ways 297

What is it about motion parallax that breaks camouflage? 298

Detection of Motion-Defined Form 301

Two ways in which motion parallax can render visible a spatial form 301

Two kinds of motion contrast 301

Detection of spatial form defined by shearing motion; contrast sensitivity functions for motion-defined form 304

Spatial summation for motion-defined form 306

Temporal summation for motion-defined form 307

Different rates of retinal image expansion: A possible aid in segregating an object’s retinal image from the retinal image of the object’s surroundings 309

Channels for Motion-Defined Form 310

Orientation Discrimination for Motion-Defined Form 312
Positional Discrimination, Width Discrimination, Separation Discrimination, and Spatial-Frequency Discrimination for Motion-Defined Form 314

Positional discrimination: High precision for discriminating relative position co-exists with low accuracy for estimating absolute position 314

Bar-width and bar-separation discrimination 316

Spatial-frequency discrimination for motion-defined form 316

Aspect Ratio Discrimination for Two-Dimensional Motion-Defined Form: Local Signals and Distant Comparisons 316

Spatial Processing of Form Defined by Short-range Apparent Motion 317

The Relation between Motion-Defined Form and Relative Depth 320

Two kinds of relative motion information about relative depth 320

Psychophysical evidence that motion-sensitive mechanisms are segregated with respect to relative disparity 322

Experimental comparison of the effectiveness of motion parallax and binocular disparity as stimuli for the perception of spatial structure in the depth dimension 324

Disordered Processing of Motion-Defined Form in Patients 324

Psychophysical Models of the Processing of Motion-Defined Form: Local Signals and Distant Comparisons 327

Detection of local motion 327

Processing of motion-defined form by comparing the local velocities in two separate regions I: Boundaries defined by compressive/expansive motion 330

Processing of motion-defined form by comparing the local velocities in two separate regions II: Boundaries defined by shearing motion 333

Resolution of a relative velocity vector into orthogonal components by the two kinds of relative-motion filter 333

Processing of motion-defined form on the basis of local signals 334

CHAPTER 6

Disparity-Defined Form 343

Preamble 343

Corresponding Points, the Horopter, Relative Disparity, and the Correspondence Problem 346
CHAPTER 7
Integration of the Five Kinds of Spatial Information:
Speculation 375
Preamble 375
Independence of Spatial Discriminations 377
Spatial Filters 378
Similarity of Orientation and Spatial-Frequency Discrimination
Thresholds for the Five Kinds of Form 380
Registration 382

APPENDIX A
Systems Science and Systems Analysis 385
Signal Analysis Is Not Systems Analysis 385
The role of signal analysis 386
Basis functions 386
Human-Designed Systems: Linear Systems and the Wide and Wild
World of Nonlinear Systems 389
Human-designed systems: Functional versus structural analysis 389
Linear systems 391
The creation of a linear system from nonlinear parts 393
The sequence of subsystems within a system 394
Nonlinear behavior 395
What is nonlinearity good for? What use is linearity? 399
To What Extent Are Methods Developed for Studying Human-Designed
Systems Valid for the Study of Biological Systems? 400
Levels of Difficulty 402
A Simplifying Assumption: “Sets of Filters” 403

APPENDIX B
Outline of Fourier Methods and Related Topics 405
Fourier Series 405
The Fourier Transform 415
Localized Images: Spatial-Frequency Description
along One Dimension 416
Can Complex Patterns Be Synthesized by Superimposing Sinusoidal Gratings? 420
Localized Images: Spatial-Frequency Description along Two Dimensions 422
Modulation 423
Demodulation 426
Autocorrelation, Cross-correlation, and Convolution 427
Autocorrelation 428
Cross-correlation 428
Convolution 429
Coherent Light, Incoherent Light, Interference, and Diffraction 430
Huygens' theory of secondary wavelets 430
Interference of light 433
Interference fringes on the retina 434
The optical quality of the eye 435
Coherence, coherence length, coherence time, and incoherence 436
Diffraction and the Airy disc 439

APPENDIX C

Imaging 441

Lens Design and the Geometrical Theory of Aberrations 441
Cardinal Points 444
Gaussian Optics 445
Fourier Optics 446
The historical background 447
The optical transfer function 448
Modulation transfer functions of real lenses: Relevance to vision research 449
Is Human Visual Acuity Limited by Diffraction, or by the Eye’s Imaging Performance? 452
The Development of the Eye’s Optics through Early Life: Why Are We Not All Short-sighted or Long-sighted? 453
Why Is the Retina Backwards? 455
APPENDIX D
Opponent-Process and Line-Element Models of Spatial Discriminations 457

APPENDIX E
Rectification, Linearizing “ON” and “OFF” Physiological Systems, and Clynes’ Theory of Physiological Rein Control 461
ON and OFF Cells 461
Linearizing ON and OFF Cells 463
The Function of the ON/OFF Distinction 466
Clynes’ Theory of Physiological Rein Control 466

APPENDIX F
A Note on Spatial Sampling and Nyquist’s Theorem 467
Nyquist’s Theorem and Aliasing 467
Spatial Sampling of the Stimulus and Its Effect on Grating Detection Threshold 470
Spatial Sampling of the Stimulus and Its Effect on Spatial-Frequency Discrimination Threshold 476
Aliasing in Human Vision Caused by Undersampling of the Retinal Image by Retinal Photoreceptors 477

APPENDIX G
The Measurement of Light 483
Photopic and Scotopic Vision 483
Photometric Units 484
The Measurement of Radiant Power 486
The Measurement of Color 487

APPENDIX H
Linear and Logarithmic Scales: The Decibel 489

APPENDIX I
Elements of Vector Calculus 491
Scalar and Vector Functions 491
Vector Fields 492
Div, Curl, and Grad 492
 Div and curl 492
 Grad 494
The Retinal Image Flow Field 494
Evidence That the Human Visual System Contains Filters for Rough
 Physiological Equivalents of Div V, Curl V, and Grad V 495
Expanding Retinal Flow Patterns and Div V Detectors 495

APPENDIX J
Hypotheses, Experiments, Serendipity, Journals, and Grants 499
 What Is It Like to Be a Researcher? 499
 What Is Science? 501
 The Role of Scientific Hypothesis 502
 Where Do Hypotheses Come From? 503
 Where Do Good Hypotheses Come From? 504
 “Fishing Expeditions” and the Role of Luck 504
 Can a Researcher Be Disadvantaged by Having an Encyclopedic and
 Up-to-date Knowledge of His or Her Research Area? 505
 Journal Articles Give a Misleading Impression of How Scientists
 Operate 505
 Grants 506

References 509

Illustration Credits 561

Index 563