Contents in Brief

1 Studying the Nervous System 1

Unit I Neural Signaling
2 Electrical Signals of Nerve Cells 25
3 Voltage-Dependent Membrane Permeability 41
4 Ion Channels and Transporters 57
5 Synaptic Transmission 77
6 Neurotransmitters and Their Receptors 109
7 Molecular Signaling within Neurons 141
8 Synaptic Plasticity 163

Unit II Sensation and Sensory Processing
9 The Somatic Sensory System: Touch and Proprioception 189
10 Pain 209
11 Vision: The Eye 229
12 Central Visual Pathways 257
13 The Auditory System 277
14 The Vestibular System 303
15 The Chemical Senses 321

Unit III Movement and Its Central Control
16 Lower Motor Neuron Circuits and Motor Control 353
17 Upper Motor Neuron Control of the Brainstem and Spinal Cord 375
18 Modulation of Movement by the Basal Ganglia 399
19 Modulation of Movement by the Cerebellum 417
20 Eye Movements and Sensory Motor Integration 435
21 The Visceral Motor System 451

Unit IV The Changing Brain
22 Early Brain Development 477
23 Construction of Neural Circuits 507
24 Modification of Neural Circuits as a Result of Experience 537
25 Repair and Regeneration in the Nervous System 559

Unit V Complex Brain Functions
26 Association Cortex and Cognition 587
27 Speech and Language 607
28 Sleep and Wakefulness 625
29 Emotions 647
30 Sex, Sexuality, and the Brain 669
31 Memory 695

Appendix: Survey of Human Neuroanatomy 717
Atlas: The Human Central Nervous System 745
CONTENTS

CHAPTER 1

Studying the Nervous System

1. Overview
2. Genetics, Genomics, and the Brain
 - BOX 1A MODEL ORGANISMS IN NEUROSCIENCE
3. The Cellular Components of the Nervous System
 - Neurons
 - Glial Cells
4. Cellular Diversity in the Nervous System
5. Neural Circuits
6. The Organization of the Human Nervous System
7. Neural Systems
 - Structural Analysis of Neural Systems
 - Functional Analysis of Neural Systems
 - BOX 1B BRAIN IMAGING TECHNIQUES
7. Analyzing Complex Behavior
8. Summary
9. Additional Reading

UNIT I

Neural Signaling

CHAPTER 2

Electrical Signals of Nerve Cells

1. Overview
2. Electrical Signals of Nerve Cells
3. Long-Distance Transmission of Electrical Signals
4. How Ion Movements Produce Electrical Signals
 - BOX 2A PASSIVE MEMBRANE PROPERTIES
5. Forces That Create Membrane Potentials
6. Electrochemical Equilibrium in an Environment with More Than One Permeant Ion
7. The Ionic Basis of the Resting Membrane Potential
 - BOX 2B THE REMARKABLE GIANT NERVE CELLS OF SQUID
8. The Ionic Basis of Action Potentials
 - BOX 2C ACTION POTENTIAL FORM AND NOMENCLATURE
9. Summary
10. Additional Reading

CHAPTER 3

Voltage-Dependent Membrane Permeability

1. Overview
2. Ionic Currents across Nerve Cell Membranes
3. Two Types of Voltage-Dependent Ionic Currents
4. Two Voltage-Dependent Membrane Conductances
5. Reconstruction of the Action Potential
 - BOX 3A THE VOLTAGE CLAMP METHOD
6. Long-Distance Signaling by Means of Action Potentials
 - BOX 3B THRESHOLD
7. Increased Conduction Velocity as a Result of Myelination
8. Summary
9. Additional Reading

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CHAPTER 4

Ion Channels and Transporters 57

<table>
<thead>
<tr>
<th>Overview 57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Channels Underlying Action Potentials 57</td>
</tr>
<tr>
<td>BOX 4A THE PATCH CLAMP METHOD 59</td>
</tr>
<tr>
<td>BOX 4B TOXINS THAT POISON ION CHANNELS 62</td>
</tr>
<tr>
<td>The Diversity of Ion Channels 63</td>
</tr>
<tr>
<td>BOX 4C EXPRESSION OF ION CHANNELS IN XENOPUS OOCYTES 63</td>
</tr>
<tr>
<td>Voltage-Gated Ion Channels 64</td>
</tr>
<tr>
<td>Ligand-Gated Ion Channels 66</td>
</tr>
<tr>
<td>Stretch- and Heat-Activated Channels 66</td>
</tr>
<tr>
<td>The Molecular Structure of Ion Channels 66</td>
</tr>
<tr>
<td>Active Transporters Create and Maintain Ion Gradients 69</td>
</tr>
<tr>
<td>BOX 4D DISEASES CAUSED BY ALTERED ION CHANNELS 70</td>
</tr>
<tr>
<td>Functional Properties of the Na+/K+ Pump 72</td>
</tr>
<tr>
<td>The Molecular Structure of ATPase Pumps 72</td>
</tr>
<tr>
<td>Summary 74</td>
</tr>
<tr>
<td>Additional Reading 75</td>
</tr>
</tbody>
</table>

CHAPTER 5

Synaptic Transmission 77

<table>
<thead>
<tr>
<th>Overview 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Synapses 78</td>
</tr>
<tr>
<td>Signal Transmission at Chemical Synapses 80</td>
</tr>
<tr>
<td>Properties of Neurotransmitters 81</td>
</tr>
<tr>
<td>BOX 5A CRITERIA THAT DEFINE A NEUROTRANSMITTER 84</td>
</tr>
<tr>
<td>Quantal Release of Neurotransmitters 84</td>
</tr>
<tr>
<td>Release of Transmitters from Synaptic Vesicles 86</td>
</tr>
<tr>
<td>Local Recycling of Synaptic Vesicles 86</td>
</tr>
<tr>
<td>The Role of Calcium in Transmitter Secretion 88</td>
</tr>
<tr>
<td>Molecular Mechanisms of Synaptic Vesicle Cycling 90</td>
</tr>
<tr>
<td>BOX 5B DISEASES THAT AFFECT THE PRESYNAPTIC TERMINAL 93</td>
</tr>
<tr>
<td>Neurotransmitter Receptors 96</td>
</tr>
<tr>
<td>Postsynaptic Membrane Permeability Changes during Synaptic Transmission 97</td>
</tr>
<tr>
<td>Excitatory and Inhibitory Postsynaptic Potentials 101</td>
</tr>
<tr>
<td>Summation of Postsynaptic Potentials 102</td>
</tr>
<tr>
<td>BOX 5C THE “TRIPARTITE SYNAPSE” 104</td>
</tr>
<tr>
<td>Summary 105</td>
</tr>
<tr>
<td>Additional Reading 106</td>
</tr>
</tbody>
</table>

CHAPTER 6

Neurotransmitters and Their Receptors 109

<table>
<thead>
<tr>
<th>Overview 109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories of Neurotransmitters 109</td>
</tr>
<tr>
<td>Acetylcholine 111</td>
</tr>
<tr>
<td>BOX 6A NEUROTOXINS THAT ACT ON POSTSYNAPTIC RECEPTORS 114</td>
</tr>
<tr>
<td>Glutamate 116</td>
</tr>
<tr>
<td>BOX 6B MYASTHENIA GRAVIS: AN AUTOIMMUNE DISEASE OF NEUROMUSCULAR SYNAPSES 117</td>
</tr>
<tr>
<td>BOX 6C EXCITOTOXICITY FOLLOWING ACUTE BRAIN INJURY 121</td>
</tr>
<tr>
<td>GABA and Glycine 122</td>
</tr>
<tr>
<td>BOX 6D EXCITATORY ACTIONS OF GABA IN THE DEVELOPING BRAIN 124</td>
</tr>
<tr>
<td>The Biogenic Amines 125</td>
</tr>
<tr>
<td>BOX 6E BIOGENIC AMINE NEUROTRANSMITTERS AND PSYCHIATRIC DISORDERS 126</td>
</tr>
<tr>
<td>BOX 6F ADDICTION 128</td>
</tr>
<tr>
<td>ATP and Other Purines 131</td>
</tr>
<tr>
<td>Peptide Neurotransmitters 132</td>
</tr>
<tr>
<td>Unconventional Neurotransmitters 135</td>
</tr>
<tr>
<td>BOX 6G MARIJUANA AND THE BRAIN 137</td>
</tr>
<tr>
<td>Summary 139</td>
</tr>
<tr>
<td>Additional Reading 139</td>
</tr>
</tbody>
</table>

CHAPTER 7

Molecular Signaling within Neurons 141

<table>
<thead>
<tr>
<th>Overview 141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategies of Molecular Signaling 141</td>
</tr>
<tr>
<td>The Activation of Signaling Pathways 143</td>
</tr>
<tr>
<td>Receptor Types 144</td>
</tr>
<tr>
<td>G-Proteins and Their Molecular Targets 145</td>
</tr>
<tr>
<td>Second Messengers 147</td>
</tr>
<tr>
<td>BOX 7A DYNAMIC IMAGING OF INTRACELLULAR SIGNALING 149</td>
</tr>
<tr>
<td>Second Messenger Targets: Protein Kinases and Phosphatases 151</td>
</tr>
<tr>
<td>Nuclear Signaling 153</td>
</tr>
<tr>
<td>BOX 7B DENDRITIC SPINES 154</td>
</tr>
<tr>
<td>Examples of Neuronal Signal Transduction 157</td>
</tr>
<tr>
<td>Summary 159</td>
</tr>
<tr>
<td>Additional Reading 160</td>
</tr>
</tbody>
</table>
CHAPTER 9
The Somatic Sensory System: Touch and Proprioception 189

Overview 189
Afferent Fibers Convey Somatic Sensory Information to the Central Nervous System 189
Somatic Sensory Afferents Exhibit Distinct Functional Properties 191
BOX 9A DERMATOMES 191
Mechanoreceptors Specialized to Receive Tactile Information 194
Mechanoreceptors Specialized for Proprioception 196
Central Pathways Conveying Tactile Information from the Body: The Dorsal Column–Medial Lemniscal System 198
Central Pathways Conveying Tactile Information from the Face: The Trigeminothalamic System 200
Central Pathways Conveying Proprioceptive Information from the Body 200
Central Pathways Conveying Proprioceptive Information from the Face 201
The Somatic Sensory Components of the Thalamus 201
Primary Somatic Sensory Cortex 202
BOX 9B PATTERNS OF ORGANIZATION WITHIN THE SENSORY CORTICES: BRAIN MODULES 203

CHAPTER 10
Pain 209

Overview 209
Nociceptors 209
Transduction and Transmission of Nociceptive Signals 211
BOX 10A CAPSAICIN 212
Central Pain Pathways Are Distinct from Mechanosensory Pathways 213
BOX 10B REFERRED PAIN 214
BOX 10C A DORSAL COLUMN PATHWAY FOR VISCERAL PAIN 215
Parallel Pain Pathways 217
Pain and Temperature Pathways for the Face 218
Other Modalities Mediated by the Anterolateral System 220
Sensitization 220
Descending Control of Pain Perception 223
BOX 10D PHANTOM LIMBS AND PHANTOM PAIN 222
The Placebo Effect 223
The Physiological Basis of Pain Modulation 224
Summary 226
Additional Reading 226
CHAPTER 11

Vision: The Eye 229

Overview 229
Anatomy of the Eye 229
The Formation of Images on the Retina 230
 BOX 11A MYOPIA AND OTHER REFRACTIVE ERRORS 231
The Surface of the Retina 233
Retinal Circuitry 233
 BOX 11B THE BLIND SPOT 234
 BOX 11C MACULAR DEGENERATION 235
 BOX 11D RETINITIS PIGMENTOSA 237
Retinal Pigment Epithelium 238
Phototransduction 238
Functional Specialization of the Rod and Cone Systems 242
Anatomical Distribution of Rods and Cones 244
Cones and Color Vision 245
 BOX 11E THE IMPORTANCE OF CONTEXT IN COLOR PERCEPTION 246
Retinal Circuits for Detecting Luminance Change 249
 BOX 11F THE PERCEPTION OF LIGHT INTENSITY 250
Contribution of Retinal Circuits to Light Adaptation 253
Summary 255
Additional Reading 256

CHAPTER 12

Central Visual Pathways 257

Overview 257
Central Projections of Retinal Ganglion Cells 257
The Retinotopic Representation of the Visual Field 259
Visual Field Deficits 261
Spatiotemporal Tuning Properties of Neurons in Primary Visual Cortex 263
Primary Visual Cortex Architecture 265
Combining Inputs from Two Eyes 267
Division of Labor within the Primary Visual Pathway 269
 BOX 12A RANDOM DOT STEREOGRAMS AND RELATED AMUSEMENTS 270
The Functional Organization of Extrastriate Visual Areas 272
Summary 274
Additional Reading 275

CHAPTER 13

The Auditory System 277

Overview 277
Sound 277
The Audible Spectrum 278
A Synopsis of Auditory Function 279
 BOX 13A FOUR CAUSES OF ACQUIRED HEARING LOSS 279
 BOX 13B MUSIC 280
The External Ear 281
The Middle Ear 282
 BOX 13C SENSORINEURAL HEARING LOSS AND COCHLEAR IMPLANTS 283
The Inner Ear 284
Hair Cells and the Mechanoelectrical Transduction of Sound Waves 287
The Ionic Basis of Mechanotransduction in Hair Cells 290
The Cochlear Amplifier 291
Tuning and Timing in the Auditory Nerve 291
 BOX 13D THE SWEET SOUND OF DISTORTION 292
How Information from the Cochlea Reaches Targets in the Brainstem 293
Integrating Information from the Two Ears 294
Monaural Pathways from the Cochlear Nucleus to the Nuclei of the Lateral Lemniscus 297
Integration in the Inferior Colliculus 297
The Auditory Thalamus 297
The Auditory Cortex 298
 BOX 13E REPRESENTING COMPLEX SOUNDS IN THE BRAINS OF BATS AND HUMANS 299
Summary 301
Additional Reading 301

CHAPTER 14

The Vestibular System 303

Overview 303
The Vestibular Labyrinth 303
 BOX 14A A PRIMER ON TERMINOLOGY 304
Vestibular Hair Cells 305
 BOX 14B ADAPTATION AND TUNING OF VESTIBULAR HAIR CELLS 306
The Otolith Organs: The Utricle and Saccule 307
How Otolith Neurons Sense Tilts and Linear Accelerations of the Head 309
The Semicircular Canals 310
How Semicircular Canal Neurons Sense Angular Accelerations 312
CHAPTER 16
Lower Motor Neuron Circuits and Motor Control 353

Overview 353
Neural Centers Responsible for Movement 353
Motor Neuron–Muscle Relationships 355
The Motor Unit 357
The Regulation of Muscle Force 358

BOX 16A MOTOR UNIT PLASTICITY 359
The Spinal Cord Circuitry Underlying Muscle Stretch Reflexes 362
The Influence of Sensory Activity on Motor Behavior 364
Other Sensory Feedback Affecting Motor Performance 365
Flexion Reflex Pathways 367

BOX 16B LOCOMOTION IN THE LEECH AND THE LAMPREY 368
Spinal Cord Circuitry and Locomotion 369

BOX 16C THE AUTONOMY OF CENTRAL PATTERN GENERATORS: EVIDENCE FROM THE LOBSTER STOMATOGASTRIC GANGLION 370
The Lower Motor Neuron Syndrome 372

BOX 16D AMYOTROPIC LATERAL SCLEROSIS 373
Summary 373
Additional Reading 374

CHAPTER 17
Upper Motor Neuron Control of the Brainstem and Spinal Cord 375

Overview 375
Organization of Descending Motor Control 375
The Corticospinal and Corticobulbar Tracts 377

BOX 17A PATTERNS OF FACIAL WEAKNESS AND THEIR IMPORTANCE FOR LOCALIZING NEUROLOGICAL INJURY 379
Functional Organization of the Primary Motor Cortex 380

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CHAPTER 17

The Premotor Cortex 387
Motor Control Centers in the Brainstem: Upper Motor Neurons that Maintain Balance, Govern Posture, and Orient Gaze 389

BOX 17D THE RETICULAR FORMATION 391
Damage to Descending Motor Pathways: The Upper Motor Neuron Syndrome 395

BOX 17E MUSCLE TONE 397
Summary 397
Additional Reading 398

CHAPTER 18

Modulation of Movement by the Basal Ganglia 399
Overview 399
Projections to the Basal Ganglia 399
Projections from the Basal Ganglia to Other Brain Regions 402
Evidence from Studies of Eye Movements 404
Circuits within the Basal Ganglia System 405
Dopamine Modulates Basal Ganglia Circuits 407
Hypokinetic and Hyperkinetic Movement Disorders 408

BOX 18A PARKINSON’S DISEASE: AN OPPORTUNITY FOR NOVEL THERAPEUTIC APPROACHES 410
BOX 18B HUNTINGTON’S DISEASE 411
BOX 18C DEEP BRAIN STIMULATION 412
BOX 18D BASAL GANGLIA LOOPS AND NON-MOTOR BRAIN FUNCTIONS 414
Summary 416
Additional Reading 416

CHAPTER 19

Modulation of Movement by the Cerebellum 417
Overview 417
Organization of the Cerebellum 417
Projections to the Cerebellum 419
Projections from the Cerebellum 421
Circuits within the Cerebellum 423
Cerebellar Circuitry and the Coordination of Ongoing Movement 426

BOX 19A PRION DISEASES 427
Further Consequences of Cerebellar Lesions 429

CHAPTER 20

Eye Movements and Sensory Motor Integration 435
Overview 435
What Eye Movements Accomplish 435
The Actions and Innervation of Extraocular Muscles 436

BOX 20A THE PERCEPTION OF STABILIZED RETINAL IMAGES 437
Types of Eye Movements and Their Functions 438
Neural Control of Saccadic Eye Movements 440

BOX 20B SENSORY MOTOR INTEGRATION IN THE SUPERIOR COLLICULUS 443
BOX 20C FROM PLACE CODES TO RATE CODES 445
Neural Control of Smooth Pursuit Movements 449
Neural Control of Vergence Movements 449
Summary 450
Additional Reading 450

CHAPTER 21

The Visceral Motor System 451
Overview 451
Early Studies of the Visceral Motor System 454
Distinctive Features of the Visceral Motor System 454
The Sympathetic Division of the Visceral Motor System 456

BOX 21A THE HYPOTHALAMUS 456
The Enteric Nervous System 461
Sensory Components of the Visceral Motor System 462
Central Control of Visceral Motor Functions 464

BOX 21B HORNER’S SYNDROME 465
Neurotransmission in the Visceral Motor System 466

BOX 21C OBESITY AND THE BRAIN 466
Autonomic Regulation of Cardiovascular Function 468
Autonomic Regulation of the Bladder 470
Autonomic Regulation of Sexual Function 472
Summary 473
Additional Reading 474
UNIT IV
THE CHANGING BRAIN 475

CHAPTER 22
Early Brain Development 477
Overview 477
Formation of the Nervous System: Gastrulation and Neurulation 477
BOX 22A STEM CELLS: PROMISE AND PERIL 479
Formation of the Major Brain Subdivisions 481
BOX 22B RHOMBOMERES 484
The Molecular Basis of Neural Induction 485
BOX 22C RETINOIC ACID: TERATOGEN AND INDUCTIVE SIGNAL 488
Integrated Inductive Signals Establish Neuron Identity 489
The Initial Differentiation of Neurons and Glia 489
BOX 22D NEUROGENESIS: WHERE, WHEN, AND WHAT 492
Molecular Regulation of Neurogenesis 493
The Generation of Neuronal Diversity 495
Molecular and Genetic Disruptions of Early Neural Development 496
BOX 22E TRIPLE JEOPARDY: DISEASES ASSOCIATED WITH SONIC HEDGEHOG 497
Neuronal Migration in the Peripheral Nervous System 499
BOX 22F MIXING IT UP: LONG-DISTANCE NEURONAL MIGRATION 501
Neuronal Migration in the Central Nervous System 502
Molecular Mechanisms of Neuronal Migration and Cortical Migration Disorders 503
Summary 503
Additional Reading 505

CHAPTER 23
Construction of Neural Circuits 507
Overview 507
Neuronal Polarization: The First Step in Neural Circuit Formation 507

CHAPTER 24
Modification of Neural Circuits as a Result of Experience 537
Overview 537
Neural Activity and Brain Development 537
Critical Periods 538
BOX 24A BUILT-IN BEHAVIORS 540
BOX 24B BIRDSONG 541
Cellular and Molecular Correlates of Activity-Dependent Plasticity during Critical Periods 542
Critical Periods in Visual System Development 543
BOX 24C TRANSNEURONAL LABELING WITH RADIOACTIVE AMINO ACIDS 544
Effects of Visual Deprivation on Ocular Dominance 545
BOX 24D CORRELATION AS CAUSATION: LESSONS FROM A THREE-EYED FROG 549
Manipulating Competition 550
Amblyopia, Strabismus, and Critical Periods for Human Vision 551
Evidence for Critical Periods in Other Sensory Systems 552
CHAPTER 26
Association Cortex and Cognition 587

Overview 587
The Association Cortices 587
An Overview of Cortical Structure 588
Unique Features of the Association Cortices 589

BOX 26A CORTICAL LAMINATION 590
The Parietal Association Cortex Mediates Attention 591
“Attention Neurons” in the Monkey Parietal Cortex 594
The Temporal Association Cortex Mediates Recognition 596
“Recognition Neurons” in the Monkey Temporal Cortex 598
The Frontal Association Cortex Mediates Planning and Decision Making 599

BOX 26B NEUROPSYCHOLOGICAL TESTING 600
BOX 26C PSYCHOSURGERY 602

Regeneration of Peripheral Synapses 567

BOX 25A SPECIFIC REGENERATION OF SYNAPTIC CONNECTIONS IN AUTONOMIC GANGLIA 568
Regeneration after Damage to the Central Nervous System 570
Cellular and Molecular Responses to Injury 570

BOX 25B CASUALTIES OF WAR AND SPORTS 571
Axon Growth after Brain Injury 574
Neurogenesis in the Mature Central Nervous System 575
Adult Neurogenesis in Non-Mammalian Vertebrates 576
Neurogenesis in the Adult Mammalian Brain 577
Cellular and Molecular Mechanisms of Adult Neurogenesis 578
Adult Neurogenesis, Stem Cells, and Brain Repair in Humans 580
BOX 25C NUCLEAR WEAPONS AND NEUROGENESIS 581
Summary 583
Additional Reading 583

CHAPTER 27
Speech and Language 607

Overview 607
Language Is Localized and Lateralized in the Brain 607

BOX 27A THE GENERATION OF SPEECH 608
Aphasias 610

BOX 27B DO OTHER ANIMALS HAVE LANGUAGE? 611

BOX 27C WORDS AND MEANING 613
Confirmation of Language Lateralization and Other Insights 615

BOX 27D LANGUAGE AND HANDEDNESS 617
The Search for Anatomical Differences between the Right and Left Hemispheres 618
Mapping Language Functions 619
The Role of the Right Hemisphere 622
Sign Language 622
Summary 623
Additional Reading 623

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CHAPTER 28
Sleep and Wakefulness 625
Overview 625
Why Do Humans (and Many Other Animals) Sleep? 625
BOX 28A THE SLEEP STYLES OF DIFFERENT SPECIES 627
The Circadian Cycle of Sleep and Wakefulness 628
BOX 28B MOLECULAR MECHANISMS OF BIOLOGICAL CLOCKS 629
Stages of Sleep 631
BOX 28C ELECTROENCEPHALOGRAPHY 632
Physiological Changes in Sleep States 635
Other Possible Functions of Sleep and Dreaming 636
Neural Circuits Governing Sleep 637
BOX 28D CONSCIOUSNESS 638
Thalamocortical Interactions in Sleep 641
BOX 28E DRUGS AND SLEEP 641
Sleep Disorders 643
BOX 28F CHRONIC FATIGUE SYNDROME 644
Summary 645
Additional Reading 645

CHAPTER 29
Emotions 647
Overview 647
Physiological Changes Associated with Emotion 647
BOX 29A FACIAL EXPRESSIONS: PYRAMIDAL AND EXTRA-PYRAMIDAL CONTRIBUTIONS 648
The Integration of Emotional Behavior 650
The Limbic System 652
The Importance of the Amygdala 653
BOX 29B THE ANATOMY OF THE AMYGDALA 654
BOX 29C THE REASONING BEHIND AN IMPORTANT DISCOVERY 655
BOX 29D FEAR AND THE HUMAN AMYGDALA: A CASE STUDY 657
BOX 29E AFFECTIVE DISORDERS 659
The Relationship between Neocortex and Amygdala 660
Cortical Lateralization of Emotional Functions 661
Emotion, Reason, and Social Behavior 662
Emotional Reinforcement and Addiction 663
Summary 666
Additional Reading 667

CHAPTER 30
Sex, Sexuality, and the Brain 669
Overview 669
Sexual Dimorphisms and Sexually Dimorphic Behaviors 669
Sex, Gonads, Bodies, and Brains 671
BOX 30A THE SCIENCE OF LOVE (OR, LOVE IS A DRUG) 672
Hormonal Influences on Sexual Dimorphism 674
Primary Sexual Dimorphisms in the Brain 676
Brain Dimorphisms and the Control of Reproductive Behaviors 678
Structural and Functional Dimorphisms for Pregnancy and Parenting 680
BOX 30B THE GOOD MOTHER 683
Cellular and Molecular Basis of Sexually Dimorphic Structures and Behaviors 684
Steroid Receptors and Responses in the Adult Brain 686
Human Genetic Disorders of Genotypic and Phenotypic Sex 687
Sexual Orientation and the Brain: Molecular and Genetic Analysis 688
Sexual Orientation and Human Brain Structure 690
Sex-Based Differences in Cognitive Functions 691
Summary 693
Additional Reading 693

CHAPTER 31
Memory 695
Overview 695
Qualitative Categories of Human Memory 695
Temporal Categories of Memory 696
BOX 31A PHYLOGENETIC MEMORY 697
Memory Consolidation and Priming 698
The Importance of Association in Information Storage 698
Conditioned Learning 699
BOX 31B SAVANT SYNDROME 700
Forgetting 702
Brain Systems Underlying Declarative Memory Acquisition and Storage 703
BOX 31C CLINICAL CASES REVEAL AN ANATOMICAL SUBSTRATE FOR DECLARATIVE MEMORIES 703
Brain Systems Underlying Nondeclarative Memory Acquisition and Storage 711
Memory and Aging 712
BOX 31D ALZHEIMER’S DISEASE 713
Summary 714
Additional Reading 715
APPENDIX

Survey of Human Neuroanatomy 717
Overview 717
Neuroanatomical Terminology 717
Basic Subdivisions of the Central Nervous System 718
External Anatomy of the Spinal Cord 720
Internal Anatomy of the Spinal Cord 721
Brainstem and Cranial Nerves 722
Lateral Surface of the Brain 728
Dorsal and Ventral Surfaces of the Brain 729
Midsagittal Surface of the Brain 730
Internal Anatomy of the Forebrain 731

BOX A THALAMUS AND THALAMOCORTICAL RELATIONS 732
Blood Supply of the Brain and Spinal Cord 735

BOX B STROKE 735
The Blood–Brain Barrier 741
The Meninges 742
The Ventricular System 742
References 744

ATLAS

The Human Central Nervous System 745
Plate 1: Brain Surface 746
Plate 2: Coronal MR 748
Plate 3: Axial MR 750
Plate 4: Sagittal MR 754
Plate 5: Brainstem 756
Plate 6: Spinal Cord 758

GLOSSARY G–1

ILLUSTRATION CREDITS IC–1

INDEX I–1