Principles of ANIMAL COMMUNICATION
Second Edition

Jack W. Bradbury | Sandra L. Vehrencamp
Cornell Lab of Ornithology and Department of Neurobiology and Behavior Cornell University

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Contents

Chapter 1
Signals and Communication 1

Overview 1
Why Study Animal Communication? 1
Do animals communicate? 1
Diversity and principles 2

Cues, Signals, and Signal Evolution 3
Cues 3
Signals 4
Signal evolution 5

Principles and Animal Communication 7
Principles of Evolutionary Biology 9

Classifying Communication Systems 10
Classifying by preadaptation, modality, and medium 12
Classifying by informational focus 12
Classification by honesty guarantees 15
Classification by context 15
Cross-classifications 16

The Signaling Sequence 16

Chapter 2
Sound and Sound Signal Production 19

Overview 19
Properties of Sound 19

The media of sound communication 19
The nature of sound 20
The characterization of sounds 22
The propagation of sound 30

Sound Signal Generation 33
Producing vibrations 34
Modification and coupling of sound signals 51
Balancing amplification and efficiency 55

Chapter 3
Sound Signal Propagation and Reception 65

Overview 65

Sound Propagation 65
Overall attenuation 66
Frequency pattern distortion 71
Temporal pattern distortion 78
Noise masking 81

Sound Reception 83
Coupling between medium and the receiver 84
Modification of captured sound signals 93
Detection and analysis of received sound signals 96

Body Size and Sound 107

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Chapter 4
Light and Visual Signal Production 113

Overview 113

Properties of Light 113
- Characteristics of electromagnetic radiation 113
- How electromagnetic radiation interacts with molecules 115
- Constraints on EMR wavelengths for visual communication 116
- How visible light interacts with matter 118

Light-Signal Generation 121
- Describing color 122
- Pigments 123
- Structural colors 130
- Bioluminescence 138

Modification and Coupling 139
- Combinatorial color-production mechanisms 140
- Color patterns 143
- Changing colors 143
- Postures and movements 146
- Transparency 148

Chapter 5
Visual Signal Propagation and Reception 153

Overview 153

Transmission of Visual Signals 153
- Overview of transmission steps 153
- Availability and quality of ambient light 155
- Contrast with background 159
- Transmission from sender to receiver 163
- Signal detectability 164

Coupling from the Medium to the Receptor 165
- The evolution of light-collecting strategies 165
- Transparent lenses 168
- Focusing the light 169
- Controlling the amount of entering light 169

Reception of Visual Signals 170
- The visual pigment 170
- Photoreceptor cells 173
- The retina 174
- Resolution and sensitivity 177
- Field of view 181

Visual Processing 182
- Color vision 182
- Feature detectors 187
- Depth perception 187

Chapter 6
Chemical Signals 193

Overview 193

General Features of Chemical Communication 193
- Contrasts between chemical, auditory, and visual signals 194
- Forms of chemical communication 194
- Identifying chemical signals: Function before structure 194

Production of Chemical Signals 195
- Types of chemicals used for intraspecific communication 195
- Production mechanisms 196
- Dissemination methods 208

Transmission of Chemical Signals 214
- Diffusion 214
- Transmission by current flow 217
- Other environmental effects on chemical signal transmission 220

Chemoreception 221
- Coupling from the medium to the receptor 221
- Chemosensory reception 224
- Finding the source 228

Chapter 7
Short Range Modalities 235

Overview 235

Touch 235
- Touch signal generation and propagation 235
- Touch signal reception 240
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamic Reception</td>
<td>249</td>
</tr>
<tr>
<td>Hydrodynamic stimulus generation and</td>
<td>250</td>
</tr>
<tr>
<td>propagation</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamic stimulus reception</td>
<td>252</td>
</tr>
<tr>
<td>Electroreception</td>
<td>257</td>
</tr>
<tr>
<td>Properties of electrical stimuli</td>
<td>257</td>
</tr>
<tr>
<td>Passive electroreception</td>
<td>260</td>
</tr>
<tr>
<td>Active electroreception</td>
<td>265</td>
</tr>
<tr>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>Decisions, Signals, and Information</td>
<td>279</td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Animal Decisions</td>
<td>279</td>
</tr>
<tr>
<td>Acquiring Information</td>
<td>281</td>
</tr>
<tr>
<td>Probability meters</td>
<td>281</td>
</tr>
<tr>
<td>Prior probabilities</td>
<td>281</td>
</tr>
<tr>
<td>Red lines and optimal decisions</td>
<td>281</td>
</tr>
<tr>
<td>Gaining additional information</td>
<td>282</td>
</tr>
<tr>
<td>Conditional probabilities and signal coding</td>
<td>283</td>
</tr>
<tr>
<td>Updating</td>
<td>284</td>
</tr>
<tr>
<td>Dynamic Decision Making</td>
<td>285</td>
</tr>
<tr>
<td>Biased Decision Making</td>
<td>286</td>
</tr>
<tr>
<td>Types of biases</td>
<td>286</td>
</tr>
<tr>
<td>Explanations for biases: Curvilinear utility functions</td>
<td>289</td>
</tr>
<tr>
<td>Explanations for biases: Weber’s law</td>
<td>290</td>
</tr>
<tr>
<td>Explanations for biases: Other considerations</td>
<td>291</td>
</tr>
<tr>
<td>Coding Strategies</td>
<td>293</td>
</tr>
<tr>
<td>Signal set design</td>
<td>293</td>
</tr>
<tr>
<td>Mapping schemes</td>
<td>311</td>
</tr>
<tr>
<td>Measures of coding effectiveness</td>
<td>313</td>
</tr>
<tr>
<td>So, what is information?</td>
<td>321</td>
</tr>
<tr>
<td>Chapter 9</td>
<td></td>
</tr>
<tr>
<td>The Economics of Communication</td>
<td>325</td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>Biological Economics</td>
<td>325</td>
</tr>
<tr>
<td>Merging two disciplines</td>
<td>325</td>
</tr>
<tr>
<td>Individual versus evolutionary economics</td>
<td>326</td>
</tr>
<tr>
<td>Evolutionary Models with Minimal Genetics</td>
<td>329</td>
</tr>
<tr>
<td>Simple optimality models</td>
<td>329</td>
</tr>
<tr>
<td>Evolutionary game theoretic models</td>
<td>329</td>
</tr>
<tr>
<td>Adaptive dynamics models</td>
<td>330</td>
</tr>
<tr>
<td>Genetic Complications</td>
<td>331</td>
</tr>
<tr>
<td>Genetic concepts</td>
<td>331</td>
</tr>
<tr>
<td>Evolutionary Models with Added Genetics</td>
<td>336</td>
</tr>
<tr>
<td>Quantitative genetics</td>
<td>336</td>
</tr>
<tr>
<td>Extended quantitative genetics</td>
<td>338</td>
</tr>
<tr>
<td>Extended adaptive dynamics</td>
<td>338</td>
</tr>
<tr>
<td>The Price equation</td>
<td>340</td>
</tr>
<tr>
<td>Comparing evolutionary modeling techniques</td>
<td>341</td>
</tr>
<tr>
<td>Evolutionary Currencies</td>
<td>342</td>
</tr>
<tr>
<td>Measures of relative individual fitness</td>
<td>342</td>
</tr>
<tr>
<td>Measures of relative inclusive fitness</td>
<td>344</td>
</tr>
<tr>
<td>Optimal Live History Economics</td>
<td>350</td>
</tr>
<tr>
<td>Trade-offs and optimization in evolutionary</td>
<td></td>
</tr>
<tr>
<td>economics</td>
<td></td>
</tr>
<tr>
<td>Life history trade-offs</td>
<td>350</td>
</tr>
<tr>
<td>Optimal Signaling Economics</td>
<td>352</td>
</tr>
<tr>
<td>Signals and physiological reserves</td>
<td>353</td>
</tr>
<tr>
<td>Signals and physical integrity</td>
<td>359</td>
</tr>
<tr>
<td>Signals and brains</td>
<td>363</td>
</tr>
<tr>
<td>The Value of Information</td>
<td>368</td>
</tr>
<tr>
<td>Chapter 10</td>
<td></td>
</tr>
<tr>
<td>Signal Evolution</td>
<td>375</td>
</tr>
<tr>
<td>Overview</td>
<td></td>
</tr>
<tr>
<td>The Evolution of Behavior</td>
<td>375</td>
</tr>
<tr>
<td>Models of Signal Evolution</td>
<td>377</td>
</tr>
<tr>
<td>Signals derived from sender precursors</td>
<td>377</td>
</tr>
<tr>
<td>Signals derived from receiver precursors</td>
<td>391</td>
</tr>
<tr>
<td>The Evolution of Reliable Signals</td>
<td>397</td>
</tr>
<tr>
<td>Conflicts of interest and the problem of honesty</td>
<td>397</td>
</tr>
<tr>
<td>Evolutionary game theory</td>
<td>398</td>
</tr>
<tr>
<td>Classification of signals based on type of cost</td>
<td>400</td>
</tr>
<tr>
<td>Causes of unreliable signaling</td>
<td>414</td>
</tr>
</tbody>
</table>

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Chapter 11
Conflict Resolution 421

Overview 421

The Process of Resolving Conflicts 421
Contest stages and information acquisition 422
Assessing one’s own fighting ability 423
Types of resources and their value 424

Fighting Strategies 425
Assumptions and predictions of fighting strategy models 425
Evidence supporting the alternative models 428
Role of resource value and other asymmetries 433

Agonistic Signal Repertoires 436
Two examples of agonistic signal repertoires 436
The need for honesty guarantees 437

Fighting Ability Signals 438
Body size indicators 439
Stamina indicators 441
Weapons 445

Aggressive Motivation Signals 449
Challenge signals 449
General aggressive motivation signals 450
Offensive threat signals 451

Dominance Signals 453
Status indicators 454
Territory ownership signals 457
Victory signals 461

De-escalation Signals 462

Chapter 12
Mate Attraction and Courtship 467

Overview 467

Male and Female Reproductive Strategies 467
Sexual Selection 470
Intersexual selection models 471
Evidence for alternative sexual selection models 476
Sexually Selected Traits and Signaling 480

Condition and health 480
Genetic compatibility 492
Age indicators 494
Parental ability and other direct benefits 496
Dominance 497

Courtship 500
General principles of courtship intensity and character 500
Courtship signals 503
Sex role reversal 510

Chapter 13
Social Integration 515

Overview 515

Evolution of Cooperation 515

General Principles of Recognition 517
The process of recognition 517
Recognition mechanisms 517
Evolution of identity signals 520

Male–Female Integration 522
Mate recognition 522
Pair cooperation 528

Parent–Offspring Integration 533
Offspring and parent recognition 533
Parent–offspring conflict 537
Within-family signaling interactions 538

Group Integration 544
Group recognition 544
Appeasement signals 546
Group movement coordination and decision making 552
Cooperative breeding 557

Chapter 14
Environmental Signals 561

Overview 561

The Diversity of Environmental Signals 561
Predator Deterrent Signals 562
Chapter 15
Communication

Networks 611

Overview 611

The Utility of Network Analysis 611

Characterizing Networks 612
- Basic designs 612
- Network measures 614

Network Structure and Behavior 618
- Structural types of networks 618
- Effect propagation in networks 620

Modeling Evolution in Networks 625
- Evolutionary graph theory 625
- Social evolution on graphs 626

Animal Communication Networks 630
- Linkage patterns 630
- Synchrony 637
- Other self-organized patterns 645

Chapter 16
The Broader View:
Microbes, Plants, and Humans 651

Overview 651

Microbial Communication 651
- Mate choice 652
- Cooperation and conflict 654

Plant Communication 660
- Overview of plant function, sensory systems, and behavior 660
- Competitive plant interactions 665
- Sexual selection in plants 667
- Defensive alarm signals 670
- Attraction of animal mutualists 673

Human Communication 679
- Human evolutionary history 679
- Emotional expression 681
- Dominance, power, and influence 685
- Honesty and deceit 687
- Sexual selection, mate attraction, and courtship 689

Credits C–1

Index I–1