<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Principles of Pharmacology</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Structure and Function of the Nervous System</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Chemical Signaling by Neurotransmitters and Hormones</td>
<td>77</td>
</tr>
<tr>
<td>4</td>
<td>Methods of Research in Psychopharmacology</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>Catecholamines</td>
<td>143</td>
</tr>
<tr>
<td>6</td>
<td>Serotonin</td>
<td>167</td>
</tr>
<tr>
<td>7</td>
<td>Acetylcholine</td>
<td>185</td>
</tr>
<tr>
<td>8</td>
<td>Glutamate and GABA</td>
<td>201</td>
</tr>
<tr>
<td>9</td>
<td>Drug Abuse and Addiction</td>
<td>227</td>
</tr>
<tr>
<td>10</td>
<td>Alcohol</td>
<td>265</td>
</tr>
<tr>
<td>11</td>
<td>The Opioids</td>
<td>305</td>
</tr>
<tr>
<td>12</td>
<td>Psychomotor Stimulants: Cocaine and the Amphetamines</td>
<td>339</td>
</tr>
<tr>
<td>13</td>
<td>Nicotine and Caffeine</td>
<td>373</td>
</tr>
<tr>
<td>14</td>
<td>Marijuana and the Cannabinoids</td>
<td>401</td>
</tr>
<tr>
<td>15</td>
<td>Hallucinogens, PCP, and Ketamine</td>
<td>429</td>
</tr>
<tr>
<td>16</td>
<td>Inhalants, GHB, and Anabolic–Androgenic Steroids</td>
<td>451</td>
</tr>
<tr>
<td>17</td>
<td>Environmental Neurotoxicants and Endocrine Disruptors</td>
<td>477</td>
</tr>
<tr>
<td>18</td>
<td>Anxiety Disorders: Sedative–Hypnotic and Anxiolytic Drugs</td>
<td>509</td>
</tr>
<tr>
<td>19</td>
<td>Affective Disorders: Antidepressants and Mood Stabilizers</td>
<td>543</td>
</tr>
<tr>
<td>20</td>
<td>Schizophrenia: Antipsychotic Drugs</td>
<td>575</td>
</tr>
<tr>
<td>21</td>
<td>Neurodegenerative Diseases</td>
<td>611</td>
</tr>
</tbody>
</table>

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
CNS functioning is dependent on structural features 63
The CNS has six distinct regions reflecting embryological development 63
BOX 2.3 Neuroendocrine Response to Stress 69

3 Chemical Signaling by Neurotransmitters and Hormones 77

Chemical Signaling between Nerve Cells 78

Neurotransmitter Synthesis, Release, and Inactivation 79
Neurotransmitters encompass several different kinds of chemical substances 80
Classical transmitters and neuropeptides are synthesized by different mechanisms 81
Neuromodulators are chemicals that don’t act like typical neurotransmitters 82
Neurotransmitter release involves the exocytosis and recycling of synaptic vesicles 82
Several mechanisms control the rate of neurotransmitter release by nerve cells 84
Neurotransmitters are inactivated by reuptake and by enzymatic breakdown 85

Neurotransmitter Receptors and Second-Messenger Systems 87
There are two major families of neurotransmitter receptors 87
Second messengers work by activating specific protein kinases within a cell 90
BOX 3.1 Just Say No 91
Tyrosine kinase receptors mediate the effects of neurotrophic factors 92
Pharmacology of Synaptic Transmission 93
Synaptic Plasticity 94

The Endocrine System 96
Endocrine glands can secrete multiple hormones 96
Mechanisms of hormone action vary 99
Why is the endocrine system important to pharmacologists? 100
BOX 3.2 Sex Hormones and Drug Abuse 101

4 Methods of Research in Psychopharmacology 107

Research Methods for Evaluating the Brain and Behavior 108
Techniques in Behavioral Pharmacology 108
Evaluating Animal Behavior 108
Animal testing needs to be valid and reliable to produce useful information 108
A wide variety of behaviors are evaluated by psychopharmacologists 110
BOX 4.1 Using Drug Discrimination Testing 117
BOX 4.2 Drug Testing for FDA Approval 118

Techniques in Neuropharmacology 121
Multiple Neurobiological Techniques for Assessing the CNS 121
Stereotaxic surgery is needed for accurate in vivo measures of brain function 121
Neurotransmitters, receptors, and other proteins can be quantified and visually located in the CNS 126
New tools are used for imaging the structure and function of the brain 132
Genetic engineering helps neuroscientists to ask and answer new questions 135
BOX 4.3 Transgenic Model of Huntington’s Disease 137
Behavioral and neuropharmacological methods complement one another 139

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
5 Catecholamines 143

Catecholamine Synthesis, Release, and Inactivation 144
Tyrosine hydroxylase catalyzes the rate-limiting step in catecholamine synthesis 144
Catecholamines are stored in and released from synaptic vesicles 145
Catecholamine inactivation occurs through the combination of reuptake and metabolism 148

Organization and Function of the Dopaminergic System 149
Two important dopaminergic cell groups are found in the midbrain 149
Ascending dopamine pathways have been implicated in several important behavioral functions 150
There are five main subtypes of dopamine receptors organized into D$_1$- and D$_2$-like families 151

BOX 5.1 Mutations that Affect Dopamine Synthesis 152
Dopamine receptor agonists and antagonists affect locomotor activity and other behavioral functions 153
BOX 5.2 Using “Gene Knockout” Animals to Study the Dopaminergic System 155

Organization and Function of the Noradrenergic System 158
Norepinephrine is an important transmitter in both the central and peripheral nervous systems 158
Norepinephrine and epinephrine act through α- and β-adrenergic receptors 159
The central noradrenergic system plays a significant role in arousal, cognition, and the consolidation of emotional memories 159
Several medications work by stimulating or inhibiting peripheral adrenergic receptors 161

6 Serotonin 167

Serotonin Synthesis, Release, and Inactivation 168
Serotonin synthesis is regulated by enzymatic activity and precursor availability 168
Similar processes regulate storage, release, and inactivation of serotonin and the catecholamines 170
BOX 6.1 “Ecstasy”—Harmless Feel-Good Drug, Dangerous Neurotoxin, or Miracle Medication? 171

Organization and Function of the Serotonergic System 174
The serotonergic system originates in the brainstem and projects to all forebrain areas 174
There is a large family of serotonin receptors, most of which are metabotropic 174
Multiple approaches have identified several behavioral and physiological functions of serotonin 176
BOX 6.2 Serotonin and Aggression 177

7 Acetylcholine 185

Acetylcholine Synthesis, Release, and Inactivation 186
Acetylcholine synthesis is catalyzed by the enzyme choline acetyltransferase 186
Many different drugs and toxins can alter acetylcholine storage and release 186
Acetylcholinesterase is responsible for acetylcholine breakdown 187

BOX 7.1 Botulinum Toxin—Deadly Poison, Therapeutic Remedy, and Cosmetic Aid 188

Organization and Function of the Cholinergic System 190
Cholinergic neurons play a key role in the functioning of both the peripheral and central nervous systems 190
There are two acetylcholine receptor subtypes, nicotinic and muscarinic 191
BOX 7.2 Acetylcholine and Cognitive Function 192
Glutamate and GABA 201

Glutamate 202

Glutamate Synthesis, Release, and Inactivation 202

- Neurons generate glutamate from the precursor glutamine 202
- Glutamate packaging into vesicles and uptake after release are mediated by multiple transport systems 202

Organization and Function of the Glutamatergic System 205

- Glutamate is the neurotransmitter used in many excitatory pathways in the brain 206
- Both ionotropic and metabotropic receptors mediate the synaptic effects of glutamate 206
- AMPA and NMDA receptors play a key role in learning and memory 208

GABA 217

GABA Synthesis, Release, and Inactivation 217

- GABA is synthesized by the enzyme glutamic acid decarboxylase 217
- GABA packaging into vesicles and uptake after release are mediated by specific transporter proteins 217

Organization and Function of the GABAergic System 221

- Some GABAergic neurons are interneurons, while others are projection neurons 221
- The actions of GABA are mediated by ionotropic GABA_A receptors and metabotropic GABA_B receptors 221

Drug Abuse and Addiction 227

Introduction to Drug Abuse and Addiction 228

- Drugs of abuse are widely consumed in our society 228
- Drug use in our society has increased and has become more heavily regulated over time 229

Features of Drug Abuse and Addiction 232

- Drug addiction is a chronic, relapsing behavioral disorder 232
- There are two types of progression in drug use 235
- Which drugs are the most addictive? 237

Factors that Influence the Development and Maintenance of Drug Abuse and Addiction 238

- The addiction potential of a substance is influenced by its route of administration 238
- Most abused drugs exert rewarding and reinforcing effects 238

Drug dependence leads to withdrawal symptoms when abstinence is attempted 242
- Discriminative stimulus effects contribute to drug-seeking behavior 243
- Addiction is a heritable disorder 244
- Psychosocial variables also contribute to addiction risk 245
- The factors contributing to drug addiction can be combined into a biopsychosocial model 246

The Neurobiology of Addiction 248

- Drug reward and reinforcement are mediated by a complex neuroanatomical and neurochemical circuit 248
- Neuroadaptive responses to repeated drug exposure are thought to underlie the development of addiction 252
- Structural and functional abnormalities in the prefrontal cortex contribute to the symptoms of addiction 258
- Is addiction a disease? 260

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Contents

10 Alcohol 265

Psychopharmacology of Alcohol 266
Alcohol has a long history of use 266
What is an alcohol and where does it come from? 267
The pharmacokinetics of alcohol determines its bioavailability 268
Chronic alcohol use leads to both tolerance and physical dependence 270
Alcohol affects many organ systems 273
BOX 10.1 The Role of Expectation in Alcohol-Enhanced Human Sexual Response 274
BOX 10.2 Gender Differences in Alcohol Effects 280

Neurochemical Effects of Alcohol 283
Animal models are vital for alcohol research 283
Alcohol acts on multiple neurotransmitters 284

Alcoholism 291
Defining alcoholism and estimating its incidence have proved difficult 291
The causes of alcoholism are multimodal 293
Multiple treatment options provide hope for rehabilitation 297

11 The Opioids 305

Narcotic Analgesics 305
The opium poppy has a long history of use 306
Minor differences in molecular structure determine behavioral effects 307
Bioavailability predicts both physiological and behavioral effects 308
Opioids have their most important effects on the CNS and on the gastrointestinal tract 308

Opioid Receptors and Endogenous Neuropeptides 309
Receptor binding studies identified and localized opioid receptors 309
Four opioid receptor subtypes exist 310
Several families of naturally occurring opioid peptides bind to these receptors 312
BOX 11.1 Opioid Modulation of Feeding 314
Opioid receptor–mediated cellular changes are inhibitory 315

Opioids and Pain 317
The two components of pain have distinct features 318
Opioids inhibit pain transmission at spinal and supraspinal levels 320
Other forms of pain control depend on opioids 321

Opioid Reinforcement, Tolerance, and Dependence 324
Animal testing shows significant reinforcing properties 324
Dopaminergic and nondopaminergic components contribute to opioid reinforcement 324
Long-term opioid use produces tolerance, sensitization, and dependence 325
Several brain areas contribute to the opioid abstinence syndrome 327
BOX 11.2 What is OxyContin? 328
Neurobiological adaptation and rebound constitute tolerance and withdrawal 329
Environmental cues have a role in tolerance, drug abuse, and relapse 330

Treatment Programs for Opioid Addiction 331
Detoxification is the first step in the therapeutic process 331
BOX 11.3 Role of NMDA Receptors in Tolerance and Dependence 332
Treatment goals and programs rely on pharmacological support and counseling 334

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Psychomotor Stimulants: Cocaine and the Amphetamines 339

12

Cocaine 340
Background and History 340
Basic Pharmacology of Cocaine 342
Mechanisms of Cocaine Action 343
Acute Behavioral and Physiological Effects of Cocaine 345
Cocaine stimulates mood and behavior 345
Cocaine’s physiological effects are mediated by the sympathetic nervous system 346
Dopamine is important for many effects of cocaine and other psychostimulants 346
BOX 12.1 Is a Sweetened Water Solution More Reinforcing than Cocaine? 347
Brain imaging has revealed the neural mechanisms of psychostimulant action in human subjects 350
Several DA receptor subtypes mediate the functional effects of psychostimulants 351
Cocaine Abuse and the Effects of Chronic Cocaine Exposure 352
Experimental cocaine use may escalate over time to a pattern of cocaine abuse and dependence 353
Animal models can stimulate the transition from recreational to compulsive cocaine use 354

The Amphetamines 362
Background and History 362
Basic Pharmacology of the Amphetamines 364
Mechanisms of Amphetamine and Methamphetamine Action 364
Behavioral and Neural Effects of Amphetamines 365
Amphetamine and methamphetamine have therapeutic uses 365
High doses or chronic use of amphetamines can cause a variety of adverse effects 365
BOX 12.2 Psychostimulants and ADHD 366
Mephedrone and related drugs are gaining popularity as substitutes for other amphetamine-like compounds 370

Nicotine and Caffeine 373

13

Nicotine 374
Background and History 374
Basic Pharmacology of Nicotine and Its Relationship to Smoking 375
Mechanisms of Action 376
Behavioral and Physiological Effects 377
Nicotine elicits different mood changes in smokers compared with nonsmokers 377
Nicotine enhances cognitive function 377
Nicotine’s reinforcing effects are mediated by activation of the mesolimbic dopamine system 379
Nicotine produces a wide range of physiological effects 381
Nicotine is a toxic substance that can be fatal at high doses 381
Dry smoking or smoking through a nonsmoking filter can reduce nicotine exposure 381
Nicotine is extensively metabolized in the liver 381
Chronic exposure to nicotine induces tolerance and dependence 381
Cigarette Smoking 384
How many people smoke, and who are they? 384
Cigarette smokers progress through a series of stages in their smoking behavior 385
Why do smokers smoke? 385
BOX 13.1 What Is the Progression from First Cigarette to an Established Pattern of Smoking? 386
Smoking is a major cause of illness and premature death 390
Behavioral and pharmacological strategies are used to treat tobacco dependence 390
Caffeine 393
Background 393
Basic Pharmacology of Caffeine 394
Behavioral and Physiological Effects 394

- Acute subjective and behavioral effects of caffeine depend on dose and prior exposure 394
- Caffeine consumption can enhance sports performance 395
- Regular caffeine use leads to tolerance and dependence 395

Caffeine and caffeine-like drugs pose health risks but also exert therapeutic benefits 396

Mechanisms of Action 397

BOX 13.2 Do Caffeine-Containing Energy Drinks Pose a Risk to Your Health? 398

Marijuana and the Cannabinoids 401

Background and History of Marijuana 402

Basic Pharmacology of Marijuana 403

Mechanisms of Action 405

- Cannabinoid effects are mediated by cannabinoid receptors 405
- Pharmacological studies reveal the functional roles of cannabinoid receptors 406
- Endocannabinoids are cannabinoid receptor agonists synthesized by the body 407

BOX 14.1 Therapeutic Uses of Cannabinoids 410

Acute Behavioral and Physiological Effects of Cannabinoids 413

Cannabis consumption produces a dose-dependent state of intoxication 413

Marijuana use can lead to deficits in cognition and psychomotor performance 415

Cannabinoids are reinforcing to both humans and animals 416

Cannabis Abuse and the Effects of Chronic Cannabis Exposure 418

Tolerance and dependence can develop from chronic cannabinoid exposure 419

Chronic cannabis use may lead to adverse behavioral and health effects 422

BOX 14.2 Is There a Relationship between Early Heavy Marijuana Smoking and Later Risk for Developing Psychosis? 424

Hallucinogens, PCP, and Ketamine 429

Hallucinogenic Drugs 430

- Mescaline 430
- Psilocybin 430
- Dimethyltryptamine and 5-Methoxy-Dimethyltryptamine 432
- LSD 432

BOX 15.1 The Discovery of LSD 433

Salvinorin A 434

Pharmacology of Hallucinogenic Drugs 435

- Different hallucinogenic drugs vary in potency and in their time course of action 435
- Hallucinogens produce a complex set of psychological and physiological responses 435
- Most hallucinogenic drugs share a common indole-amine or phenethylamine structure 437
- Indoleamine and phenethylamine hallucinogens are 5-HT2A receptor agonists 438

Salvinorin A is a κ-opioid receptor agonist 439

The neural mechanisms underlying hallucinogenesis are not yet fully understood 439

Hallucinogenic drug use leads to adverse effects in some users 440

PCP and Ketamine 442

Background and History 442

Pharmacology of PCP and Ketamine 443

- PCP and ketamine produce a state of dissociation 443
- PCP and ketamine are noncompetitive antagonists of NMDA receptors 444
- PCP and ketamine have significant abuse potential 444

BOX 15.2 Getting High on Cough Syrup 446

PCP or ketamine exposure can cause a variety of adverse consequences 447

Novel therapeutic applications have been proposed for ketamine 448

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
16 Inhalants, GHB, and Anabolic–Androgenic Steroids 451

Inhalants 452

Background 452
Inhalants comprise a range of substances including volatile solvents, aerosols, and gases 452
These substances are particularly favored by children and adolescents 452

Behavioral and Neural Effects 452
Many inhalant effects are similar to alcohol intoxication 452
Chronic inhalant use can lead to tolerance and dependence 453
Rewarding and reinforcing effects have been demonstrated in animals 454
Inhalants are central nervous system (CNS) depressants 454
Health risks associated with inhalant abuse 455

Gamma-Hydroxybutyrate 457

Background 457

BOX 16.1 “Date Rape” Drugs 458

Behavioral and Neural Effects 459
GHB produces behavioral sedation, intoxication, and learning deficits 459
Evidence for GHB reinforcement in animal studies has been inconsistent 460

Medical and Recreational Uses of GHB 461
GHB is used therapeutically for the treatment of narcolepsy and alcoholism 461
GHB has significant abuse potential when used recreationally 462

Anabolic–Androgenic Steroids 464

Background and History 464
Anabolic steroids are structurally related to testosterone 464
Anabolic steroids were developed to help build muscle mass and enhance athletic performance 464
Anabolic steroids are currently taken by many adolescent and adult men 466
Anabolic steroids are taken in specific patterns and combinations 466

Pharmacology of Anabolic Steroids 468
Research is beginning to unravel the mechanism of action of anabolic steroids on muscle 468
Many adverse side effects are associated with anabolic steroid use 469
Regular anabolic steroid use causes dependence in some individuals 471

BOX 16.2 Anabolic Steroids and “Roid Rage” 472

17 Environmental Neurotoxicants and Endocrine Disruptors 477

Neurotoxicity 478

Endocrine Disruptors 480

- Hypothalamic–Pituitary–Gonadal (HPG) System 481
- Hypothalamic–Pituitary–Thyroid (HPT) System 481

Persistent and Semi-Persistent Organic Pollutants 484

- Polychlorinated Biphenyls (PCBs) 485
 - Neurotoxicity in adults 485
 - Neurotoxicity in children and the developing nervous system 486
 - Mechanisms of action 486
- Polybrominated Diphenyl Ethers (PBDEs) 487
 - Neurotoxicity in adults 487

Neurotoxicity in children and the developing nervous system 488

Mechanisms of action 488

Bisphenol A (BPA) 489

Neurotoxicity in children and the developing nervous system 489

Mechanisms of action 490

Insecticides 490

Organophosphate Insecticides 491

Neurotoxicity in adults 492
Neurotoxicity in children and the developing nervous system 494

Mechanisms of action 494

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Anxiety Disorders: Sedative–Hypnotic and Anxiolytic Drugs 509

Neurobiology of Anxiety 510

- **What is anxiety?** 510
- The amygdala is central to emotion processing circuits 511
- Multiple neurotransmitters mediate anxiety 513
- Genes and environment interact to determine the tendency to express anxiety 519
- The effects of early stress are dependent on timing and gender 521

Characteristics of Anxiety Disorders 524

Drugs for Treating Anxiety 531

- Barbiturates are the oldest sedative–hypnotics 533
- Benzodiazepines are highly effective for anxiety reduction 535
- Second-generation anxiolytics produce distinctive clinical effects 538
- Antidepressants relieve anxiety and depression 539
- Many novel approaches to treating anxiety are being developed 540

Affective Disorders: Antidepressants and Mood Stabilizers 543

Characteristics of Affective Disorders 544

- Major depression damages the quality of life 544
- In bipolar disorder moods alternate from mania to depression 545
- Risk factors for mood disorders are biological and environmental 546
- **BOX 19.1** Stress–Diathesis Model of Depression 548
- **BOX 19.2** Agomelatine 550

Neurochemical Basis of Mood Disorders 553

- Serotonin dysfunction contributes to mood disorders 554
- Norepinephrine activity is altered by antidepressants 557

- Norepinephrine and serotonin modulate one another 557

Neurobiological Models of Depression 558

- **BOX 19.3** Epigenetic Modifications in Psychopathology and Treatment 560

Therapies for Affective Disorders 563

- Monoamine oxidase inhibitors are the oldest antidepressant drugs 564
- Tricyclic antidepressants block the reuptake of norepinephrine and serotonin 564
- Second-generation antidepressants have different side effects 567
- Third-generation antidepressants have distinctive mechanisms of action 568
- Drugs for treating bipolar disorder stabilize the highs and the lows 569

©2013 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Neurodegenerative Diseases 611

Parkinson’s Disease and Alzheimer’s Disease 612

Parkinson’s Disease 612

The clinical features of PD are primarily motor related 612
Parkinson’s patients may also develop dementia 613
The primary pathology of PD is a loss of dopaminergic neurons in the substantia nigra 613
Animal models of PD have strengths and limitations 616
Pharmacological treatments for PD are primarily symptomatic, not disease-altering 616

BOX 21.1 Betting with Parkinson’s Disease 618
There are several unmet needs in PD diagnosis and treatment 618

Alzheimer’s Disease 619

AD is defined by several pathological cellular disturbances 620

There are several behavioral, health, and genetic risk factors for AD 622
Alzheimer’s disease cannot be definitively diagnosed until postmortem analysis 623
Several different animal models contribute to our understanding of AD 624
Symptomatic treatments are available and several others are under study for slowing disease progression 624

BOX 21.2 Measles, Mumps, and ... Alzheimer’s Vaccines? 626

Other Major Neurodegenerative Diseases 626

Huntington’s Disease 626

Symptoms 627
Only symptomatic treatments are available for HD, none alter disease progression 628
Amyotrophic Lateral Sclerosis 628
The symptoms and disease progression in ALS are devastating 628
The loss of motor neurons in ALS is complicated and poorly understood 628
Only one medication is FDA-approved for use in ALS 629

Multiple Sclerosis 629
The symptoms of MS are variable and unpredictable 630
Diagnosis 630
Causes of MS 631
Treatments fall into several categories for MS and can be very effective 632

Glossary 635
Illustration Credits 659
References 661
Author Index 693
Subject Index 699