Table of Contents

CHAPTER 1
Plant and Cell Architecture 1

Plant Life Processes: Unifying Principles 2

Plant Classification and Life Cycles 2

Plant life cycles alternate between diploid and haploid generations 3

Overview of Plant Structure 5

Plant cells are surrounded by rigid cell walls 5

Plasmodesmata allow the free movement of molecules between cells 8

New cells originate in dividing tissues called meristems 8

Plant Cell Organelles 10

Biological membranes are phospholipid bilayers that contain proteins 10

The Endomembrane System 13

The nucleus contains the majority of the genetic material 13

Gene expression involves both transcription and translation 17

The endoplasmic reticulum is a network of internal membranes 17

Secretion of proteins from cells begins with the rough ER 19

Glycoproteins and polysaccharides destined for secretion are processed in the Golgi apparatus 20

The plasma membrane has specialized regions involved in membrane recycling 22

Vacuoles have diverse functions in plant cells 23

Independently Dividing or Fusing Organelles Derived from the Endomembrane System 23

Oil bodies are lipid-storing organelles 23

Microbodies play specialized metabolic roles in leaves and seeds 24

Independently Dividing, Semiautonomous Organelles 25

Proplastids mature into specialized plastids in different plant tissues 27

Chloroplast and mitochondrial division are independent of nuclear division 29

The Plant Cytoskeleton 29

The plant cytoskeleton consists of microtubules and microfilaments 29

Actin, tubulin, and their polymers are in constant flux in the living cell 31

Cortical microtubules move around the cell by treadmilling 33

Cytoskeletal motor proteins mediate cytoplasmic streaming and directed organelle movement 33

Cell Cycle Regulation 35

Each phase of the cell cycle has a specific set of biochemical and cellular activities 35

The cell cycle is regulated by cyclins and cyclin-dependent kinases 36

Mitosis and cytokinesis involve both microtubules and the endomembrane system 37

Plant Cell Types 39

Dermal tissues cover the surfaces of plants 39

Ground tissues form the bodies of plants 40

Vascular tissues form transport networks between different parts of the plant 44

CHAPTER 2
Genome Structure and Gene Expression 51

Nuclear Genome Organization 51

The nuclear genome is packaged into chromatin 52

Centromeres, telomeres, and nucleolar organizer regions contain repetitive sequences 52

Transposons are mobile sequences within the genome 53

Chromosome organization is not random in the interphase nucleus 54
Meiosis halves the number of chromosomes and allows for the recombination of alleles 54
Polyplods contain multiple copies of the entire genome 56
Phenotypic and physiological responses to polyploidy are unpredictable 58
The role of polyploidy in evolution is still unclear 60

Plant Cytoplasmic Genomes: Mitochondria and Plastids 61
The endosymbiotic theory describes the origin of cytoplasmic genomes 61
Organellar genomes vary in size 61
Organellar genetics do not obey Mendelian principles 61

Transcriptional Regulation of Nuclear Gene Expression 62
RNA polymerase II binds to the promoter region of most protein-coding genes 62
Conserved nucleotide sequences signal transcriptional termination and polyadenylation 64

Epigenetic modifications help determine gene activity 65

Posttranscriptional Regulation of Nuclear Gene Expression 67
All RNA molecules are subject to decay 67
Noncoding RNAs regulate mRNA activity via the RNA interference (RNAi) pathway 67
Posttranslational regulation determines the life span of proteins 71

Tools for Studying Gene Function 72
Mutant analysis can help elucidate gene function 72
Molecular techniques can measure the activity of genes 73
Gene fusions can introduce reporter genes 74

Genetic Modification of Crop Plants 76
Transgenes can confer resistance to herbicides or plant pests 77
Genetically modified organisms are controversial 77

UNIT I Transport and Translocation of Water and Solutes 81

CHAPTER 3 Water and Plant Cells 83

Water in Plant Life 83
The Structure and Properties of Water 84
Water is a polar molecule that forms hydrogen bonds 84
Water is an excellent solvent 85
Water has distinctive thermal properties relative to its size 85
Water molecules are highly cohesive 85
Water has a high tensile strength 86

Diffusion and Osmosis 87
Diffusion is the net movement of molecules by random thermal agitation 87
Diffusion is most effective over short distances 88
Osmosis describes the net movement of water across a selectively permeable barrier 88

Water Potential 89
The chemical potential of water represents the free-energy status of water 89
Three major factors contribute to cell water potential 90
Water potentials can be measured 90

Water Potential of Plant Cells 91

Water enters the cell along a water potential gradient 91
Water can also leave the cell in response to a water potential gradient 92
Water potential and its components vary with growth conditions and location within the plant 93

Cell Wall and Membrane Properties 93
Small changes in plant cell volume cause large changes in turgor pressure 93
The rate at which cells gain or lose water is influenced by cell membrane hydraulic conductivity 94
Aquaporins facilitate the movement of water across cell membranes 95

Plant Water Status 96
Physiological processes are affected by plant water status 96
Solute accumulation helps cells maintain turgor and volume 96

CHAPTER 4 Water Balance of Plants 99

Water in the Soil 99
A negative hydrostatic pressure in soil water lowers soil water potential 100
Water moves through the soil by bulk flow 101

Water Absorption by Roots 101

Water moves in the root via the apoplast, symplast, and transmembrane pathways 102

Solute accumulation in the xylem can generate “root pressure” 103

Water Transport through the Xylem 104

The xylem consists of two types of transport cells 104

Water moves through the xylem by pressure-driven bulk flow 105

Water movement through the xylem requires a smaller pressure gradient than movement through living cells 106

What pressure difference is needed to lift water 100 meters to a treetop? 107

The cohesion–tension theory explains water transport in the xylem 107

Xylem transport of water in trees faces physical challenges 108

Plants minimize the consequences of xylem cavitation 110

Water Movement from the Leaf to the Atmosphere 110

Leaves have a large hydraulic resistance 111

The driving force for transpiration is the difference in water vapor concentration 111

Water loss is also regulated by the pathway resistances 112

Stomatal control couples leaf transpiration to leaf photosynthesis 112

The cell walls of guard cells have specialized features 113

An increase in guard cell turgor pressure opens the stomata 115

The transpiration ratio measures the relationship between water loss and carbon gain 116

Overview: The Soil–Plant–Atmosphere Continuum 116

CHAPTER 6

Solute Transport 143

Passive and Active Transport 144

Transport of Ions across Membrane Barriers 145

Different diffusion rates for cations and anions produce diffusion potentials 146

How does membrane potential relate to ion distribution? 146

The Nernst equation distinguishes between active and passive transport 147

Proton transport is a major determinant of the membrane potential 148

Membrane Transport Processes 149

Channels enhance diffusion across membranes 150

Carriers bind and transport specific substances 151

Primary active transport requires energy 151

Kinetic analyses can elucidate transport mechanisms 154

Membrane Transport Proteins 155

The genes for many transporters have been identified 157

Transporters exist for diverse nitrogen-containing compounds 157

Cation transporters are diverse 158

Anion transporters have been identified 160

Transporters for metal and metalloid ions transport essential micronutrients 160

Aquaporins have diverse functions 160

Plasma membrane H+-ATPases are highly regulated P-type ATPases 161
UNIT II Biochemistry and Metabolism 169

CHAPTER 7 Photosynthesis: The Light Reactions 171

Photosynthesis in Higher Plants 171

General Concepts 172
Light has characteristics of both a particle and a wave 172
When molecules absorb or emit light, they change their electronic state 173
Photosynthetic pigments absorb the light that powers photosynthesis 175

Key Experiments in Understanding Photosynthesis 175
Action spectra relate light absorption to photosynthetic activity 176
Photosynthesis takes place in complexes containing light-harvesting antennas and photochemical reaction centers 176
The chemical reaction of photosynthesis is driven by light 178
Light drives the reduction of NADP⁺ and the formation of ATP 178
Oxygen-evolving organisms have two photosystems that operate in series 179

Organization of the Photosynthetic Apparatus 180
The chloroplast is the site of photosynthesis 180
Thylakoids contain integral membrane proteins 181
Photosystems I and II are spatially separated in the thylakoid membrane 181
Anoxygenic photosynthetic bacteria have a single reaction center 182

Organization of Light-Absorbing Antenna Systems 183
Antenna systems contain chlorophyll and are membrane-associated 183
The antenna funnels energy to the reaction center 183
Many antenna pigment–protein complexes have a common structural motif 183

Mechanisms of Electron Transport 185
Electrons from chlorophyll travel through the carriers organized in the Z scheme 185
Energy is captured when an excited chlorophyll reduces an electron acceptor molecule 186
The reaction center chlorophylls of the two photosystems absorb at different wavelengths 187
The PSII reaction center is a multi-subunit pigment–protein complex 188
Water is oxidized to oxygen by PSII 188
Phoephytin and two quinones accept electrons from PSII 189
Electron flow through the cytochrome b₆f complex also transports protons 191
Plastoquinone and plastocyanin carry electrons between photosystems II and I 192
The PSI reaction center reduces NADP⁺ 192
Cyclic electron flow generates ATP but no NADPH 193
Some herbicides block photosynthetic electron flow 193

Proton Transport and ATP Synthesis in the Chloroplast 193

Repair and Regulation of the Photosynthetic Machinery 195
Carotenoids serve as photoprotective agents 196
Some xanthophylls also participate in energy dissipation 197
The PSII reaction center is easily damaged 197
PSI is protected from active oxygen species 198
Thylakoid stacking permits energy partitioning between the photosystems 198

Genetics, Assembly, and Evolution of Photosynthetic Systems 198
Chloroplast genes exhibit non-Mendelian patterns of inheritance 198
Most chloroplast proteins are imported from the cytoplasm 199
The biosynthesis and breakdown of chlorophyll are complex pathways 199
Complex photosynthetic organisms have evolved from simpler forms 199
CHAPTER 8
Photosynthesis: The Carbon Reactions 203

The Calvin–Benson Cycle 204

The Calvin–Benson cycle has three phases: carboxylation, reduction, and regeneration 204
The fixation of CO₂ via carboxylation of ribulose 1,5-bisphosphate and the reduction of the product 3-phosphoglycerate yield triose phosphates 206
The regeneration of ribulose 1,5-bisphosphate ensures the continuous assimilation of CO₂ 207
An induction period precedes the steady state of photosynthetic CO₂ assimilation 208
Many mechanisms regulate the Calvin–Benson cycle 209
Rubisco-activase regulates the catalytic activity of rubisco 209
Light regulates the Calvin–Benson cycle via the ferredoxin–thioredoxin system 210
Light-dependent ion movements modulate enzymes of the Calvin–Benson cycle 211
Light controls the assembly of chloroplast enzymes into supramolecular complexes 211

The C₂ Oxidative Photosynthetic Carbon Cycle 211

The oxygenation of ribulose 1,5-bisphosphate sets in motion the C₂ oxidative photosynthetic carbon cycle 213
Photorespiration is linked to the photosynthetic electron transport system 217
Enzymes of the plant C₂ oxidative photosynthetic carbon cycle derive from different ancestors 217
Cyanobacteria use a proteobacterial pathway for bringing carbon atoms of 2-phosphoglycolate back to the Calvin–Benson cycle 217
The C₂ oxidative photosynthetic carbon cycle interacts with many metabolic pathways 218
Production of biomass may be enhanced by engineering photorespiration 219

Inorganic Carbon–Concentrating Mechanisms 220

Inorganic Carbon–Concentrating Mechanisms: The C₄ Carbon Cycle 220
Malate and aspartate are the primary carboxylation products of the C₄ cycle 221
The C₄ cycle assimilates CO₂ by the concerted action of two different types of cells 222
The C₄ cycle uses different mechanisms for decarboxylation of four-carbon acids transported to bundle sheath cells 224

Inorganic Carbon–Concentrating Mechanisms: Crassulacean Acid Metabolism (CAM) 228
Different mechanisms regulate C₄ PEPCase and CAM PEPCase 230
CAM is a versatile mechanism sensitive to environmental stimuli 230

Accumulation and Partitioning of Photosynthates—Starch and Sucrose 230

Formation and Mobilization of Chloroplast Starch 231
Chloroplast stroma accumulates starch as insoluble granules during the day 233
Starch degradation at night requires the phosphorylation of amylopectin 236
The export of maltose prevails in the nocturnal breakdown of transitory starch 237
The synthesis and degradation of the starch granule are regulated by multiple mechanisms 237

Sucrose Biosynthesis and Signaling 238
Triose phosphates from the Calvin–Benson cycle build up the cytosolic pool of three important hexose phosphates in the light 238
Fructose 2,6-bisphosphate regulates the hexose phosphate pool in the light 239
Sucrose is continuously synthesized in the cytosol 239

CHAPTER 9
Photosynthesis: Physiological and Ecological Considerations 245

Photosynthesis Is Influenced by Leaf Properties 246
Leaf anatomy and canopy structure maximize light absorption 247
Leaf angle and leaf movement can control light absorption 249
Leaves acclimate to sun and shade environments 249

Effects of Light on Photosynthesis in the Intact Leaf 250
Light-response curves reveal photosynthetic properties 250

Bundle sheath cells and mesophyll cells exhibit anatomical and biochemical differences 224
The C₄ cycle also concentrates CO₂ in single cells 225
Light regulates the activity of key C₄ enzymes 225
Photosynthetic assimilation of CO₂ in C₄ plants demands more transport processes than in C₃ plants 225
In hot, dry climates, the C₄ cycle reduces photorespiration 228

Inorganic Carbon–Concentrating Mechanisms: Crassulacean Acid Metabolism (CAM) 228
Different mechanisms regulate C₄ PEPCase and CAM PEPCase 230
CAM is a versatile mechanism sensitive to environmental stimuli 230

Accumulation and Partitioning of Photosynthates—Starch and Sucrose 230

Formation and Mobilization of Chloroplast Starch 231
Chloroplast stroma accumulates starch as insoluble granules during the day 233
Starch degradation at night requires the phosphorylation of amylopectin 236
The export of maltose prevails in the nocturnal breakdown of transitory starch 237
The synthesis and degradation of the starch granule are regulated by multiple mechanisms 237

Sucrose Biosynthesis and Signaling 238
Triose phosphates from the Calvin–Benson cycle build up the cytosolic pool of three important hexose phosphates in the light 238
Fructose 2,6-bisphosphate regulates the hexose phosphate pool in the light 239
Sucrose is continuously synthesized in the cytosol 239
Leaves must dissipate excess light energy 252
Absorption of too much light can lead to photoinhibtion 254

Effects of Temperature on Photosynthesis in the Intact Leaf 255
Leaves must dissipate vast quantities of heat 255
There is an optimal temperature for photosynthesis 256
Photosynthesis is sensitive to both high and low temperatures 256
Photosynthetic efficiency is temperature-sensitive 257

Effects of Carbon Dioxide on Photosynthesis in the Intact Leaf 258
Atmospheric CO₂ concentration keeps rising 258
CO₂ diffusion to the chloroplast is essential to photosynthesis 258
CO₂ imposes limitations on photosynthesis 260
How will photosynthesis and respiration change in the future under elevated CO₂ conditions? 262

Stable Isotopes Record Photosynthetic Properties 264
How do we measure the stable carbon isotopes of plants? 264
Why are there carbon isotope ratio variations in plants? 265

CHAPTER 10
Stomatal Biology 269

Light-dependent Stomatal Opening 270
Guard cells respond to blue light 270
Blue light activates a proton pump at the guard cell plasma membrane 271
Blue-light responses have characteristic kinetics and lag times 273
Blue light regulates the osmotic balance of guard cells 273
Sucrose is an osmotically active solute in guard cells 275

Mediation of Blue-light Photoreception in Guard Cells by Zeaxanthin 276

Reversal of Blue Light–Stimulated Opening by Green Light 278
A carotenoid–protein complex senses light intensity 280

The Resolving Power of Photophysiology 280

CHAPTER 11
Translocation in the Phloem 285

Pathways of Translocation 286
Sugar is translocated in phloem sieve elements 286
Mature sieve elements are living cells specialized for translocation 287
Large pores in cell walls are the prominent feature of sieve elements 288
Damaged sieve elements are sealed off 289
Companion cells aid the highly specialized sieve elements 290

Patterns of Translocation: Source to Sink 291

Materials Translocated in the Phloem 292
Phloem sap can be collected and analyzed 292
Sugars are translocated in a nonreducing form 293
Other solutes are translocated in the phloem 293

Rates of Movement 295

The Pressure-Flow Model, a Passive Mechanism for Phloem Transport 295
An osmotically generated pressure gradient drives translocation in the pressure-flow model 295
Some predictions of pressure flow have been confirmed, while others require further experimentation 296
There is no bidirectional transport in single sieve elements, and solutes and water move at the same velocity 297
The energy requirement for transport through the phloem pathway is small in herbaceous plants 297
Sieve plate pores appear to be open channels 298
Pressure gradients in the sieve elements may be modest; pressures in herbaceous plants and trees appear to be similar 298
Alternative models for translocation by mass flow have been suggested 299
Does translocation in gymnosperms involve a different mechanism? 299

Phloem Loading 300
Phloem loading can occur via the apoplastic or symplast 300
Abundant data support the existence of apoplastic loading in some species 301
Sucrose uptake in the apoplastic pathway requires metabolic energy 301
Phloem loading in the apoplastic pathway involves a sucrose–H⁺ symporter 302
Phloem loading is symplastic in some species 302
The polymer-trapping model explains symplastic loading in plants with intermediary-type companion cells 303
Phloem loading is passive in several tree species 304
The type of phloem loading is correlated with several significant characteristics 304

Phloem Unloading and Sink-to-Source Transition 305
Phloem unloading and short-distance transport can occur via symplastic or apoplastic pathways 305
Transport into sink tissues requires metabolic energy 306
The transition of a leaf from sink to source is gradual 307

Photosynthate Distribution: Allocation and Partitioning 309
Allocation includes storage, utilization, and transport 309
Various sinks partition transport sugars 309
Source leaves regulate allocation 310
Sink tissues compete for available translocated photosynthate 310
Sink strength depends on sink size and activity 311
The source adjusts over the long term to changes in the source-to-sink ratio 311

Transport of Signaling Molecules 311
Turgor pressure and chemical signals coordinate source and sink activities 312
Proteins and RNAs function as signal molecules in the phloem to regulate growth and development 312
Plasmodesmata function in phloem signaling 313

CHAPTER 12
Respiration and Lipid Metabolism 317

Overview of Plant Respiration 317
Glycolysis 321
Glycolysis metabolizes carbohydrates from several sources 321
The energy-conserving phase of glycolysis extracts usable energy 322
Plants have alternative glycolytic reactions 322
In the absence of oxygen, fermentation regenerates the NAD+ needed for glycolysis 323
Plant glycolysis is controlled by its products 324
The Oxidative Pentose Phosphate Pathway 324
The oxidative pentose phosphate pathway produces NADPH and biosynthetic intermediates 326
The oxidative pentose phosphate pathway is redox-regulated 326
The Citric Acid Cycle 326
Mitochondria are semiautonomous organelles 327
Pyruvate enters the mitochondrion and is oxidized via the citric acid cycle 328
The citric acid cycle of plants has unique features 329
Mitochondrial Electron Transport and ATP Synthesis 329
The electron transport chain catalyzes a flow of electrons from NADH to O2 330
The electron transport chain has supplementary branches 332
ATP synthesis in the mitochondrion is coupled to electron transport 333
Transporters exchange substrates and products 334
Aerobic respiration yields about 60 molecules of ATP per molecule of sucrose 334
Several subunits of respiratory complexes are encoded by the mitochondrial genome 336
Plants have several mechanisms that lower the ATP yield 336
Short-term control of mitochondrial respiration occurs at different levels 338
Respiration is tightly coupled to other pathways 339
Respiration in Intact Plants and Tissues 340
Plants respire roughly half of the daily photosynthetic yield 340
Respiration operates during photosynthesis 341
Different tissues and organs respire at different rates 341
Environmental factors alter respiration rates 342
Lipid Metabolism 343
Fats and oils store large amounts of energy 343
Triacylglycerols are stored in oil bodies 343
Polar glycerolipids are the main structural lipids in membranes 344
Fatty acid biosynthesis consists of cycles of two-carbon addition 344
Glycerolipids are synthesized in the plastids and the ER 346
Lipid composition influences membrane function 348
Membrane lipids are precursors of important signaling compounds 348
Storage lipids are converted into carbohydrates in germinating seeds 348

CHAPTER 13
Assimilation of Inorganic Nutrients 353
Nitrogen in the Environment 354
Nitrogen passes through several forms in a biogeochemical cycle 354
Unassimilated ammonium or nitrate may be dangerous 355
Nitrate Assimilation 356
Many factors regulate nitrate reductase 356
Nitrate reductase converts nitrate to ammonium 357
Both roots and shoots assimilate nitrate 357

Ammonium Assimilation 358
Converting ammonium to amino acids requires two enzymes 358
Ammonium can be assimilated via an alternative pathway 360
Transamination reactions transfer nitrogen 360
Asparagine and glutamine link carbon and nitrogen metabolism 360

Amino Acid Biosynthesis 360

Biological Nitrogen Fixation 360
Free-living and symbiotic bacteria fix nitrogen 361
Nitrogen fixation requires microanaerobic or anaerobic conditions 362
Symbiotic nitrogen fixation occurs in specialized structures 363
Establishing symbiosis requires an exchange of signals 364

Sulfur Assimilation 367
Sulfate is the form of sulfur transported into plants 368
Sulfate assimilation requires the reduction of sulfate to cysteine 368
Sulfate assimilation occurs mostly in leaves 369
Methionine is synthesized from cysteine 369

Phosphate Assimilation 369

Cation Assimilation 370
Cations form covalent bonds with carbon compounds 370
Roots modify the rhizosphere to acquire iron 371
Iron cations form complexes with carbon and phosphate 372

Oxygen Assimilation 372

The Energetics of Nutrient Assimilation 372

UNIT III Growth and Development 377

CHAPTER 14 Cell Walls: Structure, Formation, and Expansion 379

Overview of Plant Cell Wall Functions and Structures 380
Plants vary in structure and function 380
Components differ for primary and secondary cell walls 382
Cellulose microfibrils have an ordered structure and are synthesized at the plasma membrane 384
Matrix polymers are synthesized in the Golgi apparatus and secreted via vesicles 387
Pectins are hydrophilic gel-forming components of the primary cell wall 388
Hemicelluloses are matrix polysaccharides that bind to cellulose 390

Primary Cell Wall Structure and Function 392
The primary cell wall is composed of cellulose microfibrils embedded in a matrix of pectins and hemicelluloses 392

New primary cell walls are assembled during cytokinesis and continue to be assembled during growth 392

Mechanisms of Cell Expansion 393
Microfibril orientation influences growth directionality of cells with diffuse growth 394
Cortical microtubules influence the orientation of newly deposited microfibrils 395

The Extent and Rate of Cell Growth 397
Stress relaxation of the cell wall drives water uptake and cell expansion 397
Acid-induced growth and wall stress relaxation are mediated by expansins 397
Cell wall models are hypotheses about how molecular components fit together to make a functional wall 399
Many structural changes accompany the cessation of wall expansion 400

Secondary Cell Wall Structure and Function 400
Secondary cell walls are rich in cellulose and hemicellulose and often have a hierarchical organization 400
Lignification transforms the SCW into a hydrophobic structure resistant to deconstruction 402
CHAPTER 15
Signals and Signal Transduction 407

Temporal and Spatial Aspects of Signaling 408
Signal Perception and Amplification 409
Receptors are located throughout the cell and are conserved across kingdoms 409
Signals must be amplified intracellularly to regulate their target molecules 411
The MAP kinase signal amplification cascade is present in all eukaryotes 411
Ca²⁺ is the most ubiquitous second messenger in plants and other eukaryotes 411
Changes in the cytosolic or cell wall pH can serve as second messengers for hormonal and stress responses 412
Reactive oxygen species act as second messengers mediating both environmental and developmental signals 413
Lipid signaling molecules act as second messengers that regulate a variety of cellular processes 414

Hormones and Plant Development 414
Auxin was discovered in early studies of coleoptile bending during phototropism 417
Gibberellins promote stem growth and were discovered in relation to the “foolish seedling disease” of rice 417
Cytokinin were discovered as cell division–promoting factors in tissue culture experiments 418
Ethylene is a gaseous hormone that promotes fruit ripening and other developmental processes 419
Abscisic acid regulates seed maturation and stomatal closure in response to water stress 419
Brassinosteroids regulate photomorphogenesis, germination, and other developmental processes 420
Strigolactones suppress branching and promote rhizosphere interactions 421

Phytohormone Metabolism and Homeostasis 421
Indole-3-pyruvate is the primary intermediate in auxin biosynthesis 421
Gibberellins are synthesized by oxidation of the diterpene ent-kaurene 422
Cytokinin are adenine derivatives with isoprene side chains 423
Ethylene is synthesized from methionine via the intermediate ACC 426
Abscisic acid is synthesized from a carotenoid intermediate 426
Brassinosteroids are derived from the sterol campesterol 428

Strigolactones are synthesized from β-carotene 429

CHAPTER 16
Signals from Sunlight 447

Phytochromes 452
Phytochrome is the primary photoreceptor for red and far-red light 452
Phytochrome can interconvert between Pr and Pfr forms 452
Pfr is the physiologically active form of phytochrome 453
The phytochrome chromophore and protein both undergo conformational changes in response to red light 453
Pfr is partitioned between the cytosol and the nucleus 454

Phytotropism 457
Phytochrome responses vary in lag time and escape time 457
Phytochrome responses fall into three main categories based on the amount of light required 457
Phytochrome A mediates responses to continuous far-red light 459
Phytochrome B mediates responses to continuous red or white light 459
Roles for phytochromes C, D, and E are emerging 459

Phytochrome Signaling Pathways 459

Phytochrome regulates membrane potentials and ion fluxes 459
Phytochrome regulates gene expression 460
Phytochrome interacting factors (PIFs) act early in signaling 460
Phytochrome signaling involves protein phosphorylation and dephosphorylation 461
Phytochrome-induced photomorphogenesis involves protein degradation 461

Blue-Light Responses and Photoreceptors 462

Blue-light responses have characteristic kinetics and lag times 462

Cryptochromes 463

The activated FAD chromophore of cryptochrome causes a conformational change in the protein 463
cry1 and cry2 have different developmental effects 465
Nuclear cryptochromes inhibit COP1-induced protein degradation 465
Cryptochrome can also bind to transcriptional regulators directly 465

The Coaction of Cryptochrome, Phytochrome, and Phototropins 466

Stem elongation is inhibited by both red and blue photoreceptors 466
Phytochrome interacts with cryptochrome to regulate flowering 467
The circadian clock is regulated by multiple aspects of light 467

Phototropins 467

Blue light induces changes in FMN absorption maxima associated with conformation changes 468
The LOV2 domain is primarily responsible for kinase activation in response to blue light 469
Blue light induces a conformational change that "uncages" the kinase domain of phototropin and leads to autophosphorylation 469
Phototropism requires changes in auxin mobilization 469
Phototropins regulate chloroplast movements via F-actin filament assembly 470
Stomatal opening is regulated by blue light, which activates the plasma membrane H+−ATPase 471
The main signal transduction events of phototropin-mediated stomatal opening have been identified 472

Responses to Ultraviolet Radiation 473

CHAPTER 17

Embryogenesis 477

Overview of Plant Growth and Development 478
Sporophytic development can be divided into three major stages 479

Embryogenesis: The Origins of Polarity 480
Embryogenesis differs between eudicots and monocots, but also features common fundamental processes 480
Apical–basal polarity is established early in embryogenesis 481
Position-dependent mechanisms guide embryogenesis 483
Intercellular signaling processes play key roles in guiding position-dependent development 484
Embryo development features regulate communication between cells 484
The analysis of mutants identifies genes for signaling processes that are essential for embryo organization 485
Auxin functions as a mobile chemical signal during embryogenesis 487
Plant polarity is maintained by polar auxin streams 487
Auxin transport is regulated by multiple mechanisms 489
The GNOM protein establishes a polar distribution of PIN auxin efflux proteins 491
MONOPTEROS encodes a transcription factor that is activated by auxin 492
Radial patterning guides formation of tissue layers 492
The origin of epidermis: a boundary and interface at the edge of the radial axis 492
Procameral precursors for the vascular stele lie at the center of the radial axis 493
The differentiation of cortical and endodermal cells involves the intercellular movement of a transcription factor 494

Meristematic Tissues: Foundations for Indeterminate Growth 495
The root and shoot apical meristems use similar strategies to enable indeterminate growth 495

The Root Apical Meristem 496
The root tip has four developmental zones 497
The origin of different root tissues can be traced to specific initial cells 497
Cell ablation experiments implicate directional signaling processes in determination of cell identity 499
Auxin contributes to the formation and maintenance of the RAM 499
Responses to auxin are mediated by several distinct families of transcription factors 499
Cytokinin is required for normal root development 500

The Shoot Apical Meristem 500
- The shoot apical meristem has distinct zones and layers 502
- Shoot tissues are derived from several discrete sets of apical initials 502
- Factors involved in auxin movement and responses influence SAM formation 503
- Embryonic SAM formation requires the coordinated expression of transcription factors 503
- A combination of positive and negative interactions determines apical meristem size 505
- KNOX class homeodomain genes help maintain the proliferative ability of the SAM through regulation of cytokinin and GA levels 506
- Localized zones of auxin accumulation promote leaf initiation 507

The Vascular Cambium 508
- The maintenance of undetermined initials in various meristem types depends on similar mechanisms 508

Chapter 18

Seed Dormancy, Germination, and Seedling Establishment 513

Seed Structure 514
- Seed anatomy varies widely among different plant groups 514

Seed Dormancy 515
- Dormancy can be imposed on the embryo by the surrounding tissues 516
- Embryonic dormancy may be caused by physiological or morphological factors 516
- Non-dormant seeds can exhibit vivipary and precocious germination 516
- The ABA:GA ratio is the primary determinant of seed dormancy 517

Release from Dormancy 519
- Light is an important signal that breaks dormancy in small seeds 519
- Some seeds require either chilling or after-ripening to break dormancy 519
- Seed dormancy can be broken by various chemical compounds 520

Seed Germination 520
- Germination can be divided into three phases corresponding to the phases of water uptake 520

Mobilization of Stored Reserves 522
- The cereal aleurone layer is a specialized digestive tissue surrounding the starchy endosperm 522

Gibberellins enhance the transcription of α-amylase mRNA 522
- The gibberellin receptor, GID1, promotes the degradation of negative regulators of the gibberellin response 523
- GA-MYB is a positive regulator of α-amylase transcription 524
- DELLIA repressor proteins are rapidly degraded 524
- ABA inhibits gibberellin-induced enzyme production 524

Seedling Growth and Establishment 526
- Auxin promotes growth in stems and coleoptiles, while inhibiting growth in roots 526
- The outer tissues of eudicot stems are the targets of auxin action 526
- The minimum lag time for auxin-induced elongation is 10 minutes 526
- Auxin-induced proton extrusion induces cell wall creep and cell elongation 528

Tropisms: Growth in Response to Directional Stimuli 528
- Gravitropism involves the lateral redistribution of auxin 528
- Polar auxin transport requires energy and is gravity independent 529
- According to the starch–statolith hypothesis, specialized amyloplasts serve as gravity sensors in root caps 530
- Auxin movements in the root are regulated by specific transporters 532
- The gravitropic stimulus perturbs the symmetric movement of auxin from the root tip 533
- Gravity perception in eudicot stems and stemlike organs occurs in the starch sheath 533
- Gravity sensing may involve pH and calcium ions (Ca$^{2+}$) as second messengers 533

Phototropism 535
- Phototropism is mediated by the lateral redistribution of auxin 535
- Phototropism occurs in a series of posttranslational events 536

Photomorphogenesis 537
- Gibberellins and brassinosteroids both suppress photomorphogenesis in the dark 538
- Hook opening is regulated by phytochrome and auxin 539
- Ethylene induces lateral cell expansion 539

Shade Avoidance 540
- Phytochrome enables plants to adapt to changes in light quality 540
- Decreasing the R:FR ratio causes elongation in sun plants 540
Reducing shade avoidance responses can improve crop yields 542

Vascular Tissue Differentiation 542

Auxin and cytokinin are required for normal vascular development 543
Zinnia suspension-cultured cells can be induced to undergo xylogenesis 544
Xylogenesis involves chemical signaling between neighboring cells 544

Root Growth and Differentiation 545

Root epidermal development follows three basic patterns 546
Auxin and other hormones regulate root hair development 546
Lateral root formation and emergence depend on endogenous and exogenous signals 547
Regions of lateral root emergence correspond with regions of auxin maxima 548
Lateral roots and shoots have gravitropic setpoint angles 549

CHAPTER 19

Vegetative Growth and Organogenesis 553

Leaf Development 553

The Establishment of Leaf Polarity 554

Hormonal signals play key roles in regulating leaf primordia emergence 555
A signal from the SAM initiates adaxial–abaxial polarity 555
ARP genes promote adaxial identity and repress the KNOX1 gene 556
Adaxial leaf development requires HD-ZIP III transcription factors 556
The expression of HD-ZIP III genes is antagonized by miR166 in abaxial regions of the leaf 558
Antagonism between KANADI and HD-ZIP III is a key determinant of adaxial–abaxial leaf polarity 558
Interactions between adaxial and abaxial tissues are required for blade outgrowth 558
Blade outgrowth is auxin dependent and regulated by the YABBY and WOX genes 558
Leaf proximal–distal polarity also depends on specific gene expression 559
In compound leaves, de-repression of the KNOX1 gene promotes leaflet formation 559

Differentiation of Epidermal Cell Types 561

Guard cell fate is ultimately determined by a specialized epidermal lineage 562
Two groups of bHLH transcription factors govern stomatal cell fate transitions 563
Peptide signals regulate stomatal patterning by interacting with cell surface receptors 563
Genetic screens have led to the identification of positive and negative regulators of trichome initiation 563
GLABRA2 acts downstream of the GL1–GL3–TTG1 complex to promote trichome formation 565
Jasmonic acid regulates Arabidopsis leaf trichome development 565

Venation Patterns in Leaves 565

The primary leaf vein is initiated discontinuously from the preexisting vascular system 566
Auxin canalization initiates development of the leaf trace 566
Basipetal auxin transport from the L1 layer of the leaf primordium initiates development of the leaf trace procambium 568
The existing vasculature guides the growth of the leaf trace 568
Higher-order leaf veins differentiate in a predictable hierarchical order 569
Auxin canalization regulates higher-order vein formation 570
Localized auxin biosynthesis is critical for higher-order venation patterns 571

Shoot Branching and Architecture 572

Axillary meristem initiation involves many of the same genes as leaf initiation and lamina outgrowth 573
Auxin, cytokinins, and strigolactones regulate axillary bud outgrowth 573
Auxin from the shoot tip maintains apical dominance 574
Strigolactones act locally to repress axillary bud growth 574
Cytokinins antagonize the effects of strigolactones 576
The initial signal for axillary bud growth may be an increase in sucrose availability to the bud 577
Integration of environmental and hormonal branching signals is required for plant fitness 577
Axillary bud dormancy in woody plants is affected by season, position, and age factors 578

Root System Architecture 579

Plants can modify their root system architecture to optimize water and nutrient uptake 579
Monocots and eudicots differ in their root system architecture 580
Root system architecture changes in response to phosphorus deficiencies 580
Root system architecture responses to phosphorus deficiency involve both local and systemic regulatory networks 582
Mycorrhizal networks augment root system architecture in all major terrestrial ecosystems 583
Secondary Growth 583
The vascular cambium and cork cambium are the secondary meristems where secondary growth originates 584
Secondary growth evolved early in the evolution of land plants 585
Secondary growth from the vascular cambium gives rise to secondary xylem and phloem 585
Phytohormones have important roles in regulating vascular cambium activity and differentiation of secondary xylem and phloem 585
Genes involved in stem cell maintenance, proliferation, and differentiation regulate secondary growth 586
Environmental factors influence vascular cambium activity and wood properties 587

CHAPTER 20
The Control of Flowering and Floral Development 591

Floral Evocation: Integrating Environmental Cues 592

The Shoot Apex and Phase Changes 592
Plant development has three phases 592
Juvenile tissues are produced first and are located at the base of the shoot 592
Phase changes can be influenced by nutrients, gibberellins, and other signals 593

Circadian Rhythms: The Clock Within 594
Circadian rhythms exhibit characteristic features 595
Phase shifting adjusts circadian rhythms to different day–night cycles 596
Photoreceptors entrain the clock 596

Photoperiodism: Monitoring Day Length 597
Plants can be classified according to their photoperiodic responses 597
The leaf is the site of perception of the photoperiodic signal 599
Plants monitor day length by measuring the length of the night 599
Night breaks can cancel the effect of the dark period 599
Photoperiodic timekeeping during the night depends on a circadian clock 599
The coincidence model is based on oscillating light sensitivity 600

The coincidence of CONSTANS expression and light promotes flowering in LDPs 601
SDPs use a coincidence mechanism to inhibit flowering in long days 603
Phytochrome is the primary photoreceptor in photoperiodism 603
A blue-light photoreceptor regulates flowering in some LDPs 604

Vernalization: Promoting Flowering with Cold 605
Vernalization results in competence to flower at the shoot apical meristem 605
Vernalization can involve epigenetic changes in gene expression 606
A range of vernalization pathways may have evolved 607

Long-Distance Signaling Involved in Flowering 608
Grafting studies provided the first evidence for a transmissible floral stimulus 608
Florigen is translocated in the phloem 609

The Identification of Florigen 610
The Arabidopsis protein FLOWERING LOCUS T (FT) is florigen 610
Gibberellins and ethylene can induce flowering 610
The transition to flowering involves multiple factors and pathways 612

Floral Meristems and Floral Organ Development 612
The shoot apical meristem in Arabidopsis changes with development 613
The four different types of floral organs are initiated as separate whorls 613
Two major categories of genes regulate floral development 614
Floral meristem identity genes regulate meristem function 614
Homeotic mutations led to the identification of floral organ identity genes 616
The ABC model partially explains the determination of floral organ identity 616
Arabidopsis Class E genes are required for the activities of the A, B, and C genes 618
According to the Quartet Model, floral organ identity is regulated by tetrameric complexes of the ABCE proteins 618
Class D genes are required for ovule formation 619
Floral asymmetry in flowers is regulated by gene expression 620
CHAPTER 21
Gametophytes, Pollination, Seeds, and Fruits 625

Development of the Male and Female Gametophyte Generations 625

Formation of Male Gametophytes in the Stamen 626
Pollen grain formation occurs in two successive stages 627
The multilayered pollen cell wall is surprisingly complex 628

Female Gametophyte Development in the Ovule 630
The Arabidopsis gynoecium is an important model system for studying ovule development 630
The vast majority of angiosperms exhibit Polygonum-type embryo sac development 630
Functional megaspores undergo a series of free nuclear mitotic divisions followed by cellularization 631
Embryo sac development involves hormonal signaling between sporophytic and gametophytic generations 632

Pollination and Fertilization in Flowering Plants 632
Delivery of sperm cells to the female gametophyte by the pollen tube occurs in six phases 633
Adhesion and hydration of a pollen grain on a compatible flower depend on recognition between pollen and stigma surfaces 634
Ca2+-triggered polarization of the pollen grain precedes tube formation 635
Pollen tubes grow by tip growth 635
Receptor-like kinases are thought to regulate the ROP1 GTPase switch, a master regulator of tip growth 635
Pollen tube tip growth in the pistil is directed by both physical and chemical cues 637
Style tissue conditions the pollen tube to respond to attractants produced by the synergids of the embryo sac 637
Double fertilization occurs in three distinct stages 638

Selfing versus Outcrossing 639
Hermaphroditic and monoecious species have evolved floral features to ensure outcrossing 639
Cytoplasmic male sterility (CMS) occurs in the wild and is of great utility in agriculture 640
Self-incompatibility (SI) is the primary mechanism that enforces outcrossing in angiosperms 640
The Brassicaceae sporophytic SI system requires two S-locus genes 641
Gametophytic self-incompatibility (GSI) is mediated by cytotoxic S-RNases and F-box proteins 642

Apomixis: Asexual Reproduction by Seed 643

Endosperm Development 643
Cellularization of coenocytic endosperm in Arabidopsis progresses from the micropylar to the chalazal region 645
Cellularization of the coenocytic endosperm of cereals progresses centripetally 646
Endosperm development and embryogenesis can occur autonomously 646
Many of the genes that control endosperm development are maternally expressed genes 647
The FIS proteins are members of a Polycomb repressive complex (PRC2) that represses endosperm development 647
Cells of the starchy endosperm and aleurone layer follow divergent developmental pathways 649
Two genes, DEK1 and CR4, have been implicated in aleurone layer differentiation 649

Seed Coat Development 650
Seed coat development appears to be regulated by the endosperm 650

Seed Maturation and Desiccation Tolerance 652
Seed filling and desiccation tolerance phases overlap in most species 652
The acquisition of desiccation tolerance involves many metabolic pathways 653
During the acquisition of desiccation tolerance, the cells of the embryo acquire a glassy state 653
LEA proteins and nonreducing sugars have been implicated in seed desiccation tolerance 653
Specific LEA proteins have been implicated in desiccation tolerance in Medicago truncatula 653
Absciscic acid plays a key role in seed maturation 654
Coat-imposed dormancy is correlated with long-term seed-viability 654

Fruit Development and Ripening 655
Arabidopsis and tomato are model systems for the study of fruit development 655
Fleshy fruits undergo ripening 657
Ripening involves changes in the color of fruit 657
Fruit softening involves the coordinated action of many cell wall–degrading enzymes 658
Taste and flavor reflect changes in acids, sugars, and aroma compounds 658
The causal link between ethylene and ripening was demonstrated in transgenic and mutant tomatoes 658
Climacteric and non-climacteric fruit differ in their ethylene responses 658
The ripening process is transcriptionally regulated 660
Angiosperms share a range of common molecular mechanisms controlling fruit development and ripening. Fruit ripening is under epigenetic control. A mechanistic understanding of the ripening process has commercial applications.

CHAPTER 22

Plant Senescence and Cell Death 665

Programmed Cell Death and Autolysis 666
- PCD during normal development differs from that of the hypersensitive response.
- The autophagy pathway captures and degrades cellular constituents within lytic compartments.
- A subset of the autophagy-related genes controls the formation of the autophagosome.
- The autophagy pathway plays a dual role in plant development.

The Leaf Senescence Syndrome 671
- The developmental age of a leaf may differ from its chronological age.
- Leaf senescence may be sequential, seasonal, or stress-induced.
- Developmental leaf senescence consists of three distinct phases.
- The earliest cellular changes during leaf senescence occur in the chloroplast.
- The autolysis of chloroplast proteins occurs in multiple compartments.
- The STAY-GREEN (SGR) protein is required for both LHCP II protein recycling and chlorophyll catabolism.
- Leaf senescence is preceded by a massive reprogramming of gene expression.

Leaf Senescence: The Regulatory Network 678
- The NAC and WRKY gene families are the most abundant transcription factors regulating leaf senescence.
- ROS serve as internal signaling agents in leaf senescence.
- Sugars accumulate during leaf senescence and may serve as a signal.
- Plant hormones interact in the regulation of leaf senescence.

Leaf Abscission 684
- The timing of leaf abscission is regulated by the interaction of ethylene and auxin.

Whole Plant Senescence 686
- Angiosperm life cycles may be annual, biennial, or perennial.
- Whole plant senescence differs from aging in animals.
- The determinacy of shoot apical meristems is developmentally regulated.
- Nutrient or hormonal redistribution may trigger senescence in monocarpic plants.
- The rate of carbon accumulation in trees increases continuously with tree size.

CHAPTER 23

Biotic Interactions 693

Beneficial Interactions between Plants and Microorganisms 695
- Nod factors are recognized by the Nod factor receptor (NFR) in legumes.
- Arbuscular mycorrhizal associations and nitrogen-fixing symbioses involve related signaling pathways.
- Rhizobacteria can increase nutrient availability, stimulate root branching, and protect against pathogens.

Harmful Interactions between Plants, Pathogens, and Herbivores 697
- Mechanical barriers provide a first line of defense against insect pests and pathogens.
- Plant secondary metabolites can deter insect herbivores.
- Plants store constitutive toxic compounds in specialized structures.
- Plants often store defensive chemicals as nontoxic water-soluble sugar conjugates in the vacuole.
- Constitutive levels of secondary compounds are higher in young developing leaves than in older tissues.

Inducible Defense Responses to Insect Herbivores 705
- Plants can recognize specific components of insect saliva.
- Modified fatty acids secreted by grasshoppers act as elicitors of jasmonic acid accumulation and ethylene emission.
- Phloem feeders activate defense signaling pathways similar to those activated by pathogen infections.
- Calcium signaling and activation of the MAP kinase pathway are early events associated with insect herbivory.
- Jasmonic acid activates defense responses against insect herbivores.
- Jasmonic acid acts through a conserved ubiquitin ligase signaling mechanism.
- Hormonal interactions contribute to plant–insect herbivore interactions.
JA initiates the production of defense proteins that inhibit herbivore digestion 710
Herbivore damage induces systemic defenses 710
Glutamate receptor-like (GLR) genes are required for long-distance electrical signaling during herbivory 712
Herbivore-induced volatiles can repel herbivores and attract natural enemies 712
Herbivore-induced volatiles can serve as long-distance signals between plants 713
Herbivore-induced volatiles can also act as systemic signals within a plant 714
Defense responses to herbivores and pathogens are regulated by circadian rhythms 714
Insects have evolved mechanisms to defeat plant defenses 715

Plant Defenses against Pathogens 715

Microbial pathogens have evolved various strategies to invade host plants 715
Pathogens produce effector molecules that aid in the colonization of their plant host cells 716
Pathogen infection can give rise to molecular “danger signals” that are perceived by cell surface pattern recognition receptors (PRRs) 717
R genes provide resistance to individual pathogens by recognizing strain-specific effectors 718
Exposure to elicitors induces a signal transduction cascade 719
Effectors released by phloem-feeding insects also activate NBS–LRR receptors 719
The hypersensitive response is a common defense against pathogens 720
Phytoalexins with antimicrobial activity accumulate after pathogen attack 721
A single encounter with a pathogen may increase resistance to future attacks 721
The main components of the salicylic acid signaling pathway for SAR have been identified 723
Interactions of plants with nonpathogenic bacteria can trigger systemic resistance through a process called induced systemic resistance (ISR) 723

Plant Defenses against Other Organisms 724

Some plant parasitic nematodes form specific associations through the formation of distinct feeding structures 724
Plants compete with other plants by secreting allelopathic secondary metabolites into the soil 725
Some plants are biotrophic pathogens of other plants 726

CHAPTER 24

Abiotic Stress 731

Defining Plant Stress 732
Physiological adjustment to abiotic stress involves trade-offs between vegetative and reproductive development 732

Acclimation and Adaptation 733
Adaptation to stress involves genetic modification over many generations 733
Acclimation allows plants to respond to environmental fluctuations 733

Environmental Factors and Their Biological Impacts on Plants 734
Water deficit decreases turgor pressure, increases ion toxicity, and inhibits photosynthesis 735
Salinity stress has both osmotic and cytotoxic effects 736
Light stress can occur when shade-adapted or shade-acclimated plants are subjected to full sunlight 736
Temperature stress affects a broad spectrum of physiological processes 736
Flooding results in anaerobic stress to the root 737
During freezing stress, extracellular ice crystal formation causes cell dehydration 737
Heavy metals can both mimic essential mineral nutrients and generate ROS 737
Mineral nutrient deficiencies are a cause of stress 737
Ozone and ultraviolet light generate ROS that cause lesions and induce PCD 737
Combinations of abiotic stresses can induce unique signaling and metabolic pathways 738
Sequential exposure to different abiotic stresses sometimes confers cross-protection 739

Stress-Sensing Mechanisms in Plants 739
Early-acting stress sensors provide the initial signal for the stress response 740

Signaling Pathways Activated in Response to Abiotic Stress 740
The signaling intermediates of many stress-response pathways can interact 740
Acclimation to stress involves transcriptional regulatory networks called regulons 743
Chloroplast genes respond to high-intensity light by sending stress signals to the nucleus 744
A self-propagating wave of ROS mediates systemic acquired acclimation 745
Epigenetic mechanisms and small RNAs provide additional protection against stress 745
Hormonal interactions regulate normal development and abiotic stress responses 745

Developmental and Physiological Mechanisms That Protect Plants against Abiotic Stress 747

Plants adjust osmotically to drying soil by accumulating solutes 748

Submerged organs develop aerenchyma tissue in response to hypoxia 749

Antioxidants and ROS-scavenging pathways protect cells from oxidative stress 750

Molecular chaperones and molecular shields protect proteins and membranes during abiotic stress 751

Plants can alter their membrane lipids in response to temperature and other abiotic stresses 752

Exclusion and internal tolerance mechanisms allow plants to cope with toxic ions 753

Phytochelatins and other chelators contribute to internal tolerance of toxic metal ions 754

Plants use cryoprotectant molecules and antifreeze proteins to prevent ice crystal formation 754

ABA signaling during water stress causes the massive efflux of K⁺ and anions from guard cells 755

Plants can alter their morphology in response to abiotic stress 757

Metabolic shifts enable plants to cope with a variety of abiotic stresses 759

The process of recovery from stress can be dangerous to the plant and requires a coordinated adjustment of plant metabolism and physiology 759

Developing crops with enhanced tolerance to abiotic stress conditions is a major goal of agricultural research 759

Glossary G–1

Illustration Credits IC–1

Photo Credits PC–1

Subject Index SI–1