Contents

PART I Fundamentals of Physiology 1

CHAPTER 1 Animals and Environments Function on the Ecological Stage 3

- The Importance of Physiology 4
- The Highly Integrative Nature of Physiology 5
- Mechanism and Origin: Physiology’s Two Central Questions 6
 - The study of mechanism: How do modern-day animals carry out their functions? 6
 - The study of origin: Why do modern-day animals possess the mechanisms they do? 8
- Natural selection is a key process of evolutionary origin 9
- Mechanism and adaptive significance are distinct concepts that do not imply each other 10

This Book’s Approach to Physiology 11

- Animals 12
 - The structural property of an animal that persists through time is its organization 13
 - Most cells of an animal are exposed to the internal environment, not the external environment 13
 - The internal environment may be permitted to change when the external environment changes, or it may be kept constant 14
- Homeostasis in the lives of animals: Internal constancy is often critical for proper function 14

BOX 1.1 NEGATIVE FEEDBACK 15

- Time in the lives of animals: Physiology changes in five time frames 16

BOX 1.2 THE EVOLUTION OF PHENOTYPIC PLASTICITY 18

- Size in the lives of animals: Body size is one of an animal’s most important traits 19

Environments 20

- Earth’s major physical and chemical environments 20
- The environment an animal occupies is often a microenvironment or microclimate 25
- Animals often modify their own environments 26

Evolutionary Processes 26

- Some processes of evolution are adaptive, others are not 26
- A trait is not an adaptation merely because it exists 27
- Adaptation is studied as an empirical science 28
- Evolutionary potential can be high or low, depending on available genetic variation 29

Individual Variation and the Question of “Personalities” within a Population 30

CHAPTER 2 Molecules and Cells in Animal Physiology 35

Cell Membranes and Intracellular Membranes 36

- The lipids of membranes are structured, diverse, fluid, and responsive to some environmental factors 37
- Proteins endow membranes with numerous functional capacities 39

BOX 2.1 PROTEIN STRUCTURE AND THE BONDS THAT MAINTAIN IT 39

- Carbohydrates play important roles in membranes 41

Epithelia 41

Elements of Metabolism 44

Enzyme Fundamentals 45

 - Enzyme-catalyzed reactions exhibit hyperbolic or sigmoid kinetics 46
Maximum reaction velocity is determined by the amount and catalytic effectiveness of an enzyme. Enzyme-substrate affinity affects reaction velocity at the substrate concentrations that are usual in cells. Enzymes undergo changes in molecular conformation and have specific binding sites that interact. Enzymes catalyze reversible reactions in both directions. Multiple molecular forms of enzymes occur at all levels of animal organization.

Regulation of Cell Function by Enzymes

The types and amounts of enzymes present depend on gene expression and enzyme degradation. Modulation of existing enzyme molecules permits fast regulation of cell function.

Evolution of Enzymes

Enzymes are instruments of change in all time frames.

The Life and Death of Proteins

Light and Color

BOX 2.2 SQUID AND BIOLUMINESCENT BACTERIA, A STUDY IN CROSS-PHYLUM COORDINATION: THE EUPRYMNA SCLOPES–VIBRIO FISCHERI SYMBIOSIS MARGARET MCFALL-NGAI

Reception and Use of Signals by Cells

Extracellular signals initiate their effects by binding to receptor proteins. Cell signal transduction often entails sequences of amplifying effects. Several second-messenger systems participate in cell signal transduction.

CHAPTER 3 Genomics, Proteomics, and Related Approaches to Physiology

Genomics

Genomics is inextricably linked with advanced methods of information processing. One overarching goal of genomics is to elucidate the evolution of genes and genomes. A second overarching goal of genomics is to elucidate the current functioning of genes and genomes. Genomes must ultimately be related empirically to phenotypes.

Top-down versus Bottom-up Approaches to the Study of Physiology

Screening or Profiling as a Research Strategy

The Study of Gene Transcription: Transcriptomics

Transcription profiling often identifies large numbers of genes that exhibit altered transcription in response to environmental or other conditions. Transcription profiling reveals that many genes routinely undergo daily cycles of transcription. Manipulations of protein synthesis can be used to clarify gene function.

Proteomics

Metabolomics

CHAPTER 4 Physiological Development and Epigenetics

The Physiology of Immature Animals Always Differs from That of Adults

Introduction to Phenotypic Plasticity and Epigenetics

Phenotypic Plasticity during Development

Environmental effects during development may arise from programmed responses to the environment or may be forced by chemical or physical necessity. Insect polyphenic development underlies some of the most dramatic cases of phenotypic plasticity. Other animals besides insects also sometimes exhibit polyphenic development.

Epigenetics

Two major mechanisms of epigenetic marking are DNA methylation and covalent modification of histone proteins. Epigenetic inheritance can be within an individual or transgenerational. Epigenetic marking plays a key role in tissue differentiation during ordinary development. Evidence increasingly points to epigenetic control of polyphenic development. Epigenetic marking may account for lifelong effects of early-life stress.
CHAPTER 5
Transport of Solutes and Water 103

Passive Solute Transport by Simple Diffusion 105
Concentration gradients give rise to the most elementary form of simple solute diffusion 106
Electrical gradients often influence the diffusion of charged solutes at membranes 107
Biological aspects of diffusion across membranes:
Some solutes dissolve in the membrane; others require channels 108
Diffusion of ions across cell membranes is determined by simultaneous concentration and electrical effects 109
Diffusion often creates challenges for cells and animals 110
Concentration gradients can create electrical gradients that alter concentration gradients 111

Passive Solute Transport by Facilitated Diffusion 112

Active Transport 113
Active transport and facilitated diffusion are types of carrier-mediated transport 113
Basic properties of active-transport mechanisms 113
Recognition of active transport completes our overview of a single animal cell 114

PART II Food, Energy, and Temperature 129

CHAPTER 6
Nutrition, Feeding, and Digestion 131

Nutrition 133
Proteins are “foremost” 134
Lipids are required for all membranes and are the principal storage compounds of animals 136
Carbohydrates are low in abundance in many animals but highly abundant when they play structural roles 137
Vitamins are essential organic compounds required in small amounts 138
Elemental nutrition: Many minerals are essential nutrients 139

Feeding 141
Many animals feed on organisms that are individually attacked and ingested 141

Suspension feeding is common in aquatic animals 143
Symbioses with microbes often play key roles in animal feeding and nutrition 145
BOX 6.1 A GENOMIC DISCOVERY: THE GUT MICROBIOME 148
BOX 6.2 TYPES OF MEAL PROCESSING SYSTEMS 149

Digestion and Absorption 152
Vertebrates, arthropods, and molluscs represent three important digestive–absorptive plans 152
Digestion is carried out by specific enzymes operating in three spatial contexts 153
BOX 6.3 THE DIGESTIVE SYSTEMS OF ARTHROPODS AND BIVALVE MOLLUSCS 154
Absorption occurs by different mechanisms for hydrophilic and hydrophobic molecules 156

Responses to Eating 159
The Control of Hunger and Satiation 160
Nutritional Physiology in Longer Frames of Time 160
BOX 6.4 LONG-TERM NATURAL FASTING IN ANIMALS 161
Nutritional physiology responds to long-term environmental change 162
The nutritional physiology of individuals is often endogenously programmed to change over time: Developmental and clock-driven changes 163

CHAPTER 7
Energy Metabolism 165

Why Animals Need Energy: The Second Law of Thermodynamics 166
Fundamentals of Animal Energetics 167
The forms of energy vary in their capacity for physiological work 167
Transformations of high-grade energy are always inefficient 168
Animals use energy to perform three major functions 168
BOX 7.1 VIEWS ON ANIMAL HEAT PRODUCTION 170
Metabolic Rate: Meaning and Measurement 170
BOX 7.2 UNITS OF MEASURE FOR ENERGY AND METABOLIC RATES 171
Direct calorimetry: The metabolic rate of an animal can be measured directly 171
Indirect calorimetry: Animal metabolic rates are usually measured indirectly 172
BOX 7.3 DIRECT MEASUREMENT VERSUS INDIRECT MEASUREMENT 172
BOX 7.4 RESPIROMETRY 174
Factors That Affect Metabolic Rates 175
Ingestion of food causes metabolic rate to rise 176
Basal Metabolic Rate and Standard Metabolic Rate 176
Metabolic Scaling: The Relation between Metabolic Rate and Body Size 177
Resting metabolic rate is an allometric function of body weight in related species 177
The metabolic rate of active animals is often also an allometric function of body weight 180
The metabolism–size relation has important physiological and ecological implications 180
BOX 7.5 SCALING OF HEART FUNCTION 181
The explanation for allometric metabolism–size relations remains unknown 183

Energetics of Food and Growth 185
Conclusion: Energy as the Common Currency of Life 185
POSTSCRIPT: The Energy Cost of Mental Effort 186

CHAPTER 8
Aerobic and Anaerobic Forms of Metabolism 189

Mechanisms of ATP Production and Their Implications 190
Aerobic catabolism consists of four major sets of reactions 190
BOX 8.1 REACTIVE OXYGEN SPECIES (ROS) 195
O2 deficiency poses two biochemical challenges: Impaired ATP synthesis and potential redox imbalance 196
Certain tissues possess anaerobic catabolic pathways that synthesize ATP 196
Anaerobic glycolysis is the principal anaerobic catabolic pathway of vertebrates 196
What happens to catabolic end products? 197
The functional roles of ATP-producing mechanisms depend on whether they operate in steady state or nonsteady state 198
Phosphagens provide an additional mechanism of ATP production without O2 198
Internal O2 stores may be used to make ATP 199
Comparative Properties of Mechanisms of ATP Production 199
Question 1: What is each mechanism’s total possible ATP yield per episode of use? 199
Question 2: How rapidly can ATP production be accelerated? 200
Question 3: What is each mechanism’s peak rate of ATP production (peak power)? 200
Question 4: How rapidly can each mechanism be reinitialized? 200
BOX 8.2 GENETIC ENGINEERING AS A TOOL TO TEST HYPOTHESES OF MUSCLE FUNCTION AND FATIGUE 201
Conclusion: All mechanisms have pros and cons 201
Two Themes in Exercise Physiology: Fatigue and Muscle Fiber Types 201
Fatigue has many, context-dependent causes 201
The muscle fibers in the muscles used for locomotion are heterogeneous in functional properties 202
The Interplay of Aerobic and Anaerobic Catabolism during Exercise 203

- Metabolic transitions occur at the start and end of vertebrate exercise 204
- The ATP source for all-out exercise varies in a regular manner with exercise duration 206
- Related species and individuals within one species are often poised very differently for use of aerobic and anaerobic catabolism 206

Responses to Impaired O₂ Influx from the Environment 208

- Air-breathing vertebrates during diving: Preserving the brain presents special challenges 208
- Animals faced with reduced O₂ availability in their usual environments may show conformity or regulation of aerobic ATP synthesis 209

BOX 8.3 PEAK O₂ CONSUMPTION AND PHYSICAL PERFORMANCE AT HIGH ALTITUDES IN MOUNTAINEERS BREATHING AMBIENT AIR 210

Water-breathing anaerobes: Some aquatic animals are capable of protracted life in water devoid of O₂ 210

CHAPTER 9 The Energetics of Aerobic Activity 215

How Active Animals Are Studied 216

BOX 9.1 THE COST OF CARRYING MASSIVE LOADS 217

The Energy Costs of Defined Exercise 218

- The most advantageous speed depends on the function of exercise 220
- The minimum cost of transport depends in regular ways on mode of locomotion and body size 221

The Maximum Rate of Oxygen Consumption 223

BOX 9.2 FINDING POWER FOR HUMAN-POWERED AIRCRAFT 224

- \(V\text{O}_{2}\text{max} \) differs among phyletic groups and often from species to species within a phyletic group 224
- \(V\text{O}_{2}\text{max} \) varies among individuals within a species 225
- \(V\text{O}_{2}\text{max} \) responds to training and selection 226

The Energetics of Routine and Extreme Daily Life 227

Long-Distance Migration 228

BOX 9.3 EEL MIGRATION AND ENERGETICS: A 2300-YEAR DETECTIVE STORY 229

Ecological Energetics 230

CHAPTER 10 Thermal Relations 233

Temperature and Heat 235

BOX 10.1 GLOBAL WARMING 236

Heat Transfer between Animals and Their Environments 236

- Conduction and convection: Convection is intrinsically faster 238
- Evaporation: The change of water from liquid to gas carries much heat away 239
- Thermal radiation permits widely spaced objects to exchange heat at the speed of light 239

Poikilothermy (Ectothermy) 242

- Poikilotherms often exert behavioral control over their body temperatures 242
- Poikilotherms must be able to function over a range of body temperatures 242
- Poikilotherms respond physiologically to their environments in all three major time frames 243
- Acute responses: Metabolic rate is an approximately exponential function of body temperature 243
- Chronic responses: Acclimation often blunts metabolic responses to temperature 244
- The rate–temperature relations and thermal limits of individuals: Ecological decline occurs at milder temperatures than the temperatures that are lethal 247
- Evolutionary changes: Species are often specialized to live at their respective body temperatures 249
- Temperature and heat matter because they affect the functional states of molecules, as well as the rates of processes 250
- Poikilotherms threatened with freezing: They may survive by preventing freezing or by tolerating it 255

BOX 10.2 EVOLUTIONARY GENOMICS: THE GENES FOR ANTIFREEZE PROTEINS ARE DESCENDED FROM GENES FOR OTHER FUNCTIONAL PROTEINS 257

Homeothermy in Mammals and Birds 259

BOX 10.3 THERMOREGULATORY CONTROL, FEVER, AND BEHAVIORAL FEVER 260

- Metabolic rate rises in cold and hot environments because of the costs of homeothermy 261
- The shape of the metabolism–temperature curve depends on fundamental heat-exchange principles 262
- Homeothermy is metabolically expensive 265
- Insulation is modulated by adjustments of the pelage or plumage, blood flow, and posture 265
Heat production is increased below thermoneutrality by shivering and nonshivering thermogenesis 266
Regional heterothermy: In cold environments, allowing some tissues to cool can have advantages 267
Countercurrent heat exchange permits selective restriction of heat flow to appendages 268
Mammals and birds in hot environments: Their first lines of defense are often not evaporative 270
Active evaporative cooling is the ultimate line of defense against overheating 271
Mammals and birds acclimatize to winter and summer 272
Evolutionary changes: Species are often specialized to live in their respective climates 274
Mammals and birds sometimes escape the demands of homeothermy by hibernation, torpor, or related processes 274
Human thermoregulation 277
Warm-Bodied Fish 278
Endothermy and Homeothermy in Insects 281
The insects that thermoregulate during flight require certain flight-muscle temperatures to fly 281
Solitary insects employ diverse mechanisms of thermoregulation 282
Colonies of social bees and wasps often display sophisticated thermoregulation 283
Coda 284
BOX 10.4 WARM FLOWERS 284

CHAPTER 11
Food, Energy, and Temperature AT WORK: The Lives of Mammals in Frigid Places 287
Food, Nutrition, Energy Metabolism, and Thermoregulation in the Lives of Adult Reindeer 288
Newborn Reindeer 291
BOX 11.1 KNOCKOUT MICE DOCUMENT THE IMPORTANCE OF BROWN FAT 291
BOX 11.2 GENOMICS CONFIRMS THAT PIGLETS LACK BROWN FAT 293
The Future of Reindeer: Timing and Ice 294
Thermoregulatory Development: Small Mammals Compared with Large 294
The Effect of Body Size on Mammals’ Lives in Cold Environments: An Overview 295
Hibernation as a Winter Strategy: New Directions and Discoveries 295
Arctic ground squirrels supercool during hibernation and arouse periodically throughout their hibernation season 297
The composition of the lipids consumed before hibernation affects the dynamics of hibernation 297
Although periodic arousals detract from the energy savings of hibernation, their function is unknown 299
The intersection of sociobiology and hibernation physiology 299

PART III Integrating Systems 303

CHAPTER 12
Neurons 305
The Physiology of Control: Neurons and Endocrine Cells Compared 306
Neurons transmit electrical signals to target cells 306
Endocrine cells broadcast hormones 308
Nervous systems and endocrine systems tend to control different processes 308
Neurons Are Organized into Functional Circuits in Nervous Systems 308
The Cellular Organization of Neural Tissue 309
Neurons are structurally adapted to transmit action potentials 310
Glial cells support neurons physically and metabolically 311
The Ionic Basis of Membrane Potentials 312
Cell membranes have passive electrical properties: Resistance and capacitance 312
Resting membrane potentials depend on selective permeability to ions: The Nernst equation 315
Ion concentration differences result from active ion transport and from passive diffusion 317
Membrane potentials depend on the permeabilities to and concentration gradients of several ion species: The Goldman equation 318
Electrogenic pumps also have a small direct effect on \(V_m \) 319

The Action Potential 320

Action potentials are voltage-dependent, all-or-none electrical signals 320
Action potentials result from changes in membrane permeabilities to ions 321
The molecular structure of the voltage-dependent ion channels reveals their functional properties 326

BOX 12.1 EVOLUTION AND MOLECULAR FUNCTION OF VOLTAGE-GATED CHANNELS 328

There are variations in the ionic mechanisms of excitable cells 328

BOX 12.2 OPTOGENETICS: CONTROLLING CELLS WITH LIGHT MATTHEW S. KAYSER 329

The Propagation of Action Potentials 330

Local circuits of current propagate an action potential 331
Membrane refractory periods prevent bidirectional propagation 332
The conduction velocity of an action potential depends on axon diameter, myelination, and temperature 332

BOX 12.3 GIANT AXONS 333

CHAPTER 13 Synapses 337

Synaptic Transmission Is Usually Chemical but Can Be Electrical 338

Electrical synapses transmit signals instantaneously 338
Chemical synapses can modify and amplify signals 340

Synaptic Potentials Control Neuronal Excitability 342

Synapses onto a spinal motor neuron exemplify functions of fast synaptic potentials 342
Synapses excite or inhibit a neuron by depolarization or hyperpolarization at the site of impulse initiation 343

Fast Chemical Synaptic Actions Are Exemplified by the Vertebrate Neuromuscular Junction 344

Chemical synapses work by releasing and responding to neurotransmitters 345
Postsynaptic potentials result from permeability changes that are neurotransmitter-dependent and voltage-independent 345

EPSPs between neurons resemble neuromuscular EPSPs but are smaller 346
Fast IPSPs can result from an increase in permeability to chloride 347

Presynaptic Neurons Release Neurotransmitter Molecules in Quantal Packets 347

Acetylcholine is synthesized and stored in the presynaptic terminal 348
Neurotransmitter release requires voltage-dependent \(Ca^{2+} \) influx 348
Neurotransmitter release is quantal and vesicular 348
Synaptic vesicles are cycled at nerve terminals in distinct steps 349
Several proteins play roles in vesicular release and recycling 350

Neurotransmitters Are of Two General Kinds 351

Neurons have one or more characteristic neurotransmitters 351
An agent is identified as a neurotransmitter if it meets several criteria 352
Vertebrate neurotransmitters have several general modes of action 353
Neurotransmitter systems have been conserved in evolution 354

Postsynaptic Receptors for Fast Ionotropic Actions: Ligand-Gated Channels 354

\(ACh \) receptors are ligand-gated channels that function as ionotropic receptors 355
Many, but not all, ligand-gated channel receptors have evolved from a common ancestor 356

Postsynaptic Receptors for Slow, Metabotropic Actions: G Protein-Coupled Receptors 357

G protein–coupled receptors initiate signal transduction cascades 357
Metabotropic receptors act via second messengers 357
Other mechanisms of G protein–mediated activity 358
G protein–coupled receptors mediate permeability-decrease synaptic potentials and presynaptic inhibition 360

Synaptic Plasticity: Synapses Change Properties with Time and Activity 360

Neurotransmitter metabolism is regulated homeostatically 360
Learning and memory may be based on synaptic plasticity 361
Habituation and sensitization in \(Aplysia \) 361
Long-term potentiation in the hippocampus 362

BOX 13.1 SYNAPSE FORMATION: COMPETING PHILOSOPHIES MATTHEW S. KAYSER 364

Long-term potentiation is a necessary component of learning 366
CHAPTER 14
Sensory Processes 369

Organization of Sensory Systems 370
Sensory receptor cells can be classified in four different ways 370
Sensory receptor cells transduce and encode sensory information 371

Mechanoreception and Touch 372
Insect bristle sensilla exemplify mechanoreceptor responses 372
Touch receptors in the skin of mammals have specialized endings 374
Proprioceptors monitor internal mechanical stimuli 376

Vestibular Organs and Hearing 376
Insects hear with tympanal organs 376
BOX 14.1 ECHOLOCATION 376
Vertebrate hair cells are used in hearing and vestibular sense 377
Vertebrate vestibular organs sense acceleration and gravity 378
Sound stimuli create movements in the vertebrate cochlea that excite auditory hair cells 379
The localization of sound is determined by analysis of auditory signals in the CNS 381

Chemoreception and Taste 383
Insect taste is localized at chemoreceptive sensilla 383
Taste in mammals is mediated by receptor cells in taste buds 384
BOX 14.2 GENOMICS AND SWEET TASTE IN HUMMINGBIRDS 386

Olfaction 387
The mammalian olfactory epithelium contains odor-generalist receptor cells 388
The vomeronasal organ of mammals detects pheromones 390

Photoreception 391
Photoreceptor cells and eyes of different groups have evolved similarities and differences 391
Rhodopsin consists of retinal conjugated to opsin, a G protein-coupled receptor 392
Phototransduction in Drosophila leads to a depolarizing receptor potential 393
The vertebrate eye focuses light onto retinal rods and cones 393
Rods and cones of the retina transduce light into a hyperpolarizing receptor potential 395

Enzymatic regeneration of rhodopsin is slow 398

Visual Sensory Processing 398
Retinal neurons respond to contrast 398
The vertebrate brain integrates visual information through parallel pathways 401
BOX 14.3 WHAT ROLES DO INDIVIDUAL NEURONS PLAY IN HIGHER VISUAL INTEGRATION? 403
Color vision is accomplished by populations of photoreceptors that contain different photopigments 404

CHAPTER 15
Nervous System Organization and Biological Clocks 407

The Organization and Evolution of Nervous Systems 408
Nervous systems consist of neurons organized into functional circuits 408
Many types of animals have evolved complex nervous systems 409
BOX 15.1 GENOMICS AND THE EVOLUTION OF NERVOUS SYSTEMS 409

The Vertebrate Nervous System: A Guide to the General Organizational Features of Nervous Systems 411
Nervous systems have central and peripheral divisions 411
The central nervous system controls physiology and behavior 411
Five principles of functional organization apply to all mammalian and most vertebrate brains 413
BOX 15.2 FUNCTIONAL MAGNETIC RESONANCE IMAGING SCOTT A. HUETTEL 415
The peripheral nervous system has somatic and autonomic divisions that control different parts of the body 416
The autonomic nervous system has three divisions 417

Biological Clocks 420
Organisms have endogenous rhythms 420
BOX 15.3 SLEEP DAVID S. GARBE 421
Biological clocks generate endogenous rhythms 423
Control by biological clocks has adaptive advantages 424
Endogenous clocks correlate with natural history and compensate for temperature 424
Clock mechanisms are based on rhythms of gene expression 424
The loci of biological clock functions vary among animals 424
Circannual and circatidal clocks: Some endogenous clocks time annual or tidal rhythms 426
Interval, or “hourglass,” timers can time shorter intervals 426

CHAPTER 16
Endocrine and Neuroendocrine Physiology 429

Introduction to Endocrine Principles 430
Hormones bind to receptor molecules expressed by target cells 431
Concentrations of hormones in the blood vary in response to varying conditions 431
Most hormones fall into three chemical classes 431
Hormone molecules exert their effects by producing biochemical changes in target cells 433
Water-soluble carrier proteins in the blood transport lipid-soluble hormones and many water-soluble hormones 434

Synthesis, Storage, and Release of Hormones 435
Peptide hormones are synthesized at ribosomes, stored in vesicles, and secreted on demand 435
Steroid hormones are synthesized on demand prior to secretion, and are released into the blood by diffusion 436

Types of Endocrine Cells and Glands 436

Control of Endocrine Secretion: The Vertebrate Pituitary Gland 437
The posterior pituitary illustrates neural control of neurosecretory cells 437
The anterior pituitary illustrates neurosecretory control of endocrine cells 438
Hormones and neural input modulate endocrine control pathways 440

The Mammalian Stress Response 442
The autonomic nervous system and HPA axis coordinate the stress response to an acute threat 443
The HPA axis modulates the immune system 444
Chronic stress causes deleterious effects 444
Plasma glucocorticoid concentrations show seasonal variations 445

Endocrine Control of Nutrient Metabolism in Mammals 445
Insulin regulates short-term changes in nutrient availability 446
Glucagon works together with insulin to ensure stable levels of glucose in the blood 448
Other hormones contribute to the regulation of nutrient metabolism 448

Endocrine Control of Salt and Water Balance in Vertebrates 449
Antidiuretic hormones conserve water 449
The renin–angiotensin–aldosterone system conserves sodium and excretes potassium 450
Atrial natriuretic peptide promotes excretion of sodium and water 451

Endocrine Control of Calcium Metabolism in Mammals 451
Parathyroid hormone increases Ca²⁺ in the blood 452
Active vitamin D increases Ca²⁺ and phosphate in the blood 452
Calcitonin opposes bone resorption and decreases Ca²⁺ and phosphate in the blood 452

Endocrine Principles in Review 453

Chemical Signals along a Distance Continuum 455
Paracrines are local chemical signals distributed by diffusion 455

BOX 16.1 HORMONES, NEURONS, AND PARACRINE NEUROMODULATORS INFLUENCE BEHAVIOR 456
Pheromones and kairomones are used as chemical signals between animals 456

Insect Metamorphosis 457
Insect metamorphosis may be gradual or dramatic 457

BOX 16.2 JUVENILE HORMONE (JH) IN THE LABORATORY, SILK INDUSTRY, AND ENVIRONMENT 458
BOX 16.3 INSECTS IN FORENSICS AND MEDICINE 459
Hormones and neurohormones control insect metamorphosis 459

CHAPTER 17
Reproduction 465

The Two Worlds of Reproductive Physiology 468

What Aspects of Reproduction Do Physiologists Study? 468

BOX 17.1 A NEW DISCOVERY: GENETICALLY LINKED SETS OF REPRODUCTIVE TRAITS 470

The Environment as a Player in Reproduction 470
Temperature and photoperiod are often used as cues 470
Latitudinal trends graphically illustrate the importance of the environment 471
Animals living in distinctive habitats often use distinctive cues for reproduction 473

Reproduce Once or More Than Once? 473
BOX 17.2 SEMELPARIETY IN A MAMMAL 474

Eggs, Provisioning, and Parental Care 475

External or Internal Fertilization? 476

The Timing of Reproductive Cycles 476
Sperm storage permits flexible timing between copulation and fertilization 476
Embryonic diapause permits flexible timing between fertilization and the completion of embryonic development 476
Embryonic diapause and other forms of diapause are common in insects 477
Delayed implantation and postpartum estrus play important timing roles in mammals 478
Some iteroparous animals reproduce only once a year 478

Sex Change 480

Reproductive Endocrinology of Placental Mammals 480
Females ovulate periodically and exhibit menstrual or estrous cycles 481
Males produce sperm continually during the reproductive season 486
BOX 17.3 SEX DETERMINATION AND DIFFERENTIATION, EMPHASIZING MAMMALS 488
Pregnancy and birth are orchestrated by specialized endocrine controls 490
Lactation, a costly part of reproduction, is governed by neuroendocrine reflexes 492

CHAPTER 18 Integrating Systems
AT WORK: Animal Navigation 497

The Adaptive Significance of Animal Navigation 498
Navigational abilities promote reproductive success 498
Navigational abilities facilitate food acquisition 499
Migrating animals need navigation 500

Navigational Strategies 500
Trail following is the most rudimentary form of animal navigation 500
Piloting animals follow a discontinuous series of learned cues 500
Path integration is a form of dead reckoning 501
Animals can derive compass information from environmental cues 501
Some animals appear to possess a map sense 506
BOX 18.1 MAGNETORECEPTORS AND MAGNETORECEPTION KENNETH J. LOHMANN 507
Sea turtles exemplify the degree of our understanding of navigation 508

Innate and Learned Components of Navigation 509
Some forms of navigation have strong innate aspects 509
The hippocampus is a critical brain area for vertebrate spatial learning and memory 509
BOX 18.2 MIGRATORY NAVIGATION IN MONARCH BUTTERFLIES: SENSORY AND GENOMIC INFORMATION 509

PART IV Movement and Muscle 513

CHAPTER 19 Control of Movement
The Motor Bases of Animal Behavior 515

Neural Control of Skeletal Muscle Is the Basis of Animal Behavior 516
Invertebrate neural circuits involve fewer neurons than vertebrate circuits 516

Vertebrate spinal reflexes compensate for circumstances, as well as initiate movements 516
BOX 19.1 MUSCLE SPINDLES 518
Motor neurons are activated primarily by CNS input rather than by spinal reflexes 520

Neural Generation of Rhythmic Behavior 522
Locust flight results from an interplay of CNS and peripheral control 522
There are different mechanisms of central pattern generation 524
Control and Coordination of Vertebrate Movement 528

Locomotion in cats involves spinal central pattern generators 528
Central pattern generators are distributed and interacting 529
The generation of movement involves several areas in the vertebrate brain 530

BOX 19.2 CIRCUITS AND ELABORATIONS OF CENTRAL PATTERN GENERATORS: THE STOMATOGASTRIC GANGLION 525

BOX 19.3 BASAL GANGLIA AND NEURODEGENERATIVE DISEASES 534

CHAPTER 20

Muscle 537

Vertebrate Skeletal Muscle Cells 538
Thick and thin filaments are polarized polymers of individual protein molecules 540
Muscles require ATP to contract 541
Calcium and the regulatory proteins tropomyosin and troponin control contractions 542

Excitation-Contraction Coupling 543

Whole Skeletal Muscles 545
Muscle contraction is the force generated by a muscle during cross-bridge activity 545
A twitch is the mechanical response of a muscle to a single stimulus 546
The velocity of shortening decreases as the load increases 546
The frequency of action potentials determines the tension developed by a muscle 547
A sustained high calcium concentration in the cytoplasm permits summation and tetanus 547
The amount of tension developed by a muscle depends on the length of the muscle at the time it is stimulated 548
In general, the amount of work a muscle can do depends on its volume 549

BOX 20.1 ELECTRIC FISH EXPLOIT MODIFIED SKELETAL MUSCLES TO GENERATE ELECTRIC SHOCKS 550

Muscle Energetics 551
ATP is the immediate source of energy for powering muscle contraction 551
Vertebrate muscle fibers vary in their use of ATP 552
Different animals employ different types of muscles that contribute to their achieving success 554

BOX 20.2 INSECT FLIGHT 555

Neural Control of Skeletal Muscle 555
The vertebrate plan is based on muscles organized into motor units 555
The innervation of vertebrate tonic muscle is intermediate between the vertebrate and arthropod plans 556
The arthropod plan employs multiterminal and polyneuronal innervation 556

Vertebrate Smooth (Unstriated) Muscle 557
Smooth muscle cells are broadly classified 558
Ca²⁺ availability controls smooth muscle contraction by myosin-linked regulation 559
The autonomic nervous system (ANS) innervates smooth muscles 560

Vertebrate Cardiac Muscle 561

CHAPTER 21

Movement and Muscle AT WORK: Plasticity in Response to Use and Disuse 565

Muscle Phenotypes 566
Power output determines a muscle’s contractile performance, and changes in response to use and disuse 567
Endurance training elicits changes in fiber type, increased capillary density, and increased mitochondrial density 567

BOX 21.1 IN ENDURANCE TRAINING, VEGF PRODUCTION PRECEDES ANGIogenesis, AND ANGIogenesis PRECEDES CHANGES OF FIBER TYPE 570
Resistance training causes hypertrophy and changes in fiber type 571
Both resistance-trained and endurance-trained muscles continue to remodel during taper 572
Combined resistance and endurance training can improve performance 572
Hypertrophy also occurs in cardiac muscles 573

Atrophy 575
Humans experience atrophy in microgravity 575
Disuse influences the fiber-type composition of muscles 577
Muscles atrophy with age 577
Some animals experience little or no disuse atrophy 578

BOX 21.2 NO TIME TO LOSE 579

Regulating Muscle Mass 579
Myostatin 579
The PI3K-Akt1 pathway 580

Summary 581
CHAPTER 22
Introduction to Oxygen and Carbon Dioxide Physiology 585

The Properties of Gases in Gas Mixtures and Aqueous Solutions 586
- Gases in the gas phase 586
- Gases in aqueous solution 587

Diffusion of Gases 588
- Gases diffuse far more readily through gas phases than through aqueous solutions 590
- Gas molecules that combine chemically with other molecules cease to contribute to the gas partial pressure 590

BOX 22.1 DIFFUSION THROUGH TISSUES CAN MEET O2 REQUIREMENTS OVER DISTANCES OF ONLY 1 MILLIMETER OR LESS 591

Convective Transport of Gases: Bulk Flow 592
BOX 22.2 INDUCTION OF INTERNAL FLOW BY AMBIENT CURRENTS 592
- Gas transport in animals often occurs by alternating convection and diffusion 593

The Oxygen Cascade 594

Expressing the Amounts and Partial Pressures of Gases in Other Units 595

The Contrasting Physical Properties of Air and Water 595

Respiratory Environments 596

CHAPTER 23
External Respiration
The Physiology of Breathing 599

Fundamental Concepts of External Respiration 600

Principles of Gas Exchange by Active Ventilation 601
- The O2 partial pressure in blood leaving a breathing organ depends on the spatial relation between the flow of the blood and the flow of the air or water 602

Arterial CO2 partial pressures are much lower in water breathers than air breathers 603

BOX 23.1 CAPACITANCE COEFFICIENTS EXPLAIN THE RELATIVE PARTIAL PRESSURES OF O2 AND CO2 IN ARTERIAL BLOOD 604

Low O2: Detection and Response 604

Introduction to Vertebrate Breathing 605

Breathing by Fish 608
- Gill ventilation is usually driven by buccal-opercular pumping 609
- Many fish use ram ventilation on occasion, and some use it all the time 610
- Decreased O2 and exercise are the major stimuli for increased ventilation in fish 610
- Several hundred species of bony fish are able to breathe air 610

Breathing by Amphibians 612
- Gills, lungs, and skin are used in various combinations to achieve gas exchange 613

Breathing by Reptiles Other than Birds 613

Breathing by Mammals 615
- The total lung volume is employed in different ways in different sorts of breathing 616
- The gas in the final airways differs from atmospheric air in composition and is motionless 616
- The forces for ventilation are developed by the diaphragm and the intercostal and abdominal muscles 617
- The control of ventilation 618

BOX 23.2 MAMMALS AT HIGH ALTITUDE, WITH NOTES ON HIGH-FLYING BIRDS 619
- In species of different sizes, lung volume tends to be a constant proportion of body size, but breathing frequency varies allometrically 621
- Pulmonary surfactant keeps the alveoli from collapsing 622

Breathing by Birds 622
- Ventilation is by bellows action 624
- Air flows unidirectionally through the parabronchi 625

BOX 23.3 BIRD DEVELOPMENT: FILLING THE LUNGS WITH AIR BEFORE HATCHING 625
- The gas-exchange system is cross-current 625

Breathing by Aquatic Invertebrates and Allied Groups 626
- Molluscs exemplify an exceptional diversity of breathing organs built on a common plan 626
Decapod crustaceans include many important water breathers and some air breathers.

Breathing by Insects and Other Tracheate Arthropods

BOX 23.4 THE BOOK LUNGS OF ARACHNIDS

Diffusion is a key mechanism of gas transport through the tracheal system.

Some insects employ conspicuous ventilation.

Microscopic ventilation is far more common than believed even 15 years ago.

Control of breathing.

Aquatic insects breathe sometimes from the water, sometimes from the atmosphere, and sometimes from both.

CHAPTER 24

Transport of Oxygen and Carbon Dioxide in Body Fluids (with an Introduction to Acid–Base Physiology)

BOX 24.1 ABSORPTION SPECTRA OF RESPIRATORY PIGMENTS

The Chemical Properties and Distributions of the Respiratory Pigments

Hemoglobins contain heme and are the most widespread respiratory pigments.

Copper-based hemocyanins occur in many arthropods and molluscs.

BOX 24.2 BLOOD CELLS AND THEIR PRODUCTION

Chlorocruorins resemble hemoglobins and occur in certain annelids.

Iron-based hemerythrins do not contain heme and occur in three or four phyla.

The O₂-Binding Characteristics of Respiratory Pigments

Human O₂ transport provides an instructive case study.

A set of general principles helps elucidate O₂ transport by respiratory pigments.

The shape of the oxygen equilibrium curve depends on O₂-binding site cooperativity.

Respiratory pigments exhibit a wide range of affinities for O₂.

The Bohr effect: Oxygen affinity depends on the partial pressure of CO₂ and the pH.

The Root effect: In unusual cases, CO₂ and pH dramatically affect the oxygen-carrying capacity of the respiratory pigment.

Thermal effects: Oxygen affinity depends on tissue temperature.

Organic modulators often exert chronic effects on oxygen affinity.

BOX 24.3 RESURREPTION OF THE BLOOD HEMOGLOBIN OF THE EXTINCT WOOLLY MAMMOTH: EVIDENCE FOR AN ANCIENT ADAPTATION TO THE CHALLENGES OF REGIONAL HYPOThERMIA

Inorganic ions may also act as modulators of respiratory pigments.

The Functions of Respiratory Pigments in Animals

Patterns of circulatory O₂ transport: The mammalian model is common but not universal.

BOX 24.4 HEME-CONTAINING GLOBINS IN INTRACELLULAR FUNCTION: MYOGLOBIN REGULATORY AND PROTECTIVE ROLES, NEUROGLOBINS, AND CYTOGLOBINS

Respiratory pigments within a single individual often display differences in O₂ affinity that aid successful O₂ transport.

Evolutionary adaptation: Respiratory pigments are molecules positioned directly at the interface between animal and environment.

The respiratory-pigment physiology of individuals undergoes acclimatization and acclimation.

Icefish live without hemoglobin.

BOX 24.5 BLOOD AND CIRCULATION IN MAMMALS AT HIGH ALTITUDE

Carbon Dioxide Transport

The extent of bicarbonate formation depends on blood buffers.

Carbon dioxide transport is interpreted by use of carbon dioxide equilibrium curves.

The Haldane effect: The carbon dioxide equilibrium curve depends on blood oxygenation.

Critical details of vertebrate CO₂ transport depend on carbonic anhydrase and anion transporters.

Acid–Base Physiology

Acid–base regulation involves excretion or retention of chemical forms affecting H⁺ concentration.

Disturbances of acid–base regulation fall into respiratory and metabolic categories.

BOX 24.6 ACIDIFICATION OF AQUATIC HABITATS

CHAPTER 25

Circulation

BOX 25.1 THE STRUCTURE AND FUNCTION OF VERTEBRATE CARDIAC MUSCLE

The heart as a pump: The action of a heart can be analyzed in terms of the physics of pumping.
The circulation must deliver O₂ to the myocardium 671
The electrical impulses for heart contraction may originate in muscle cells or neurons 672
A heart produces an electrical signature, the electrocardiogram 674
Heart action is modulated by hormonal, nervous, and intrinsic controls 674

Principles of Pressure, Resistance, and Flow in Vascular Systems 676
The rate of blood flow depends on differences in blood pressure and on vascular resistance 677
The dissipation of energy: Pressure and flow turn to heat during circulation of the blood 678

Circulation in Mammals and Birds 679
The circulatory system is closed 679
Each part of the systemic vascular system has distinctive anatomical and functional features 679
Mammals and birds have a high-pressure systemic circuit 681
Fluid undergoes complex patterns of exchange across the walls of systemic capillaries 683
The pulmonary circuit is a comparatively low-pressure system that helps keep the lungs “dry” 683
During exercise, blood flow is increased by orchestrated changes in cardiac output and vascular resistance 684
Species have evolved differences in their circulatory physiology 684
Vascular countercurrent exchangers play important physiological roles 685

Circulation in Fish 685
The circulatory plans of fish with air-breathing organs (ABOs) pose unresolved questions 687
Lungfish have specializations to promote separation of oxygenated and deoxygenated blood 688

BOX 25.2 AN INCOMPLETELY DIVIDED CENTRAL CIRCULATION CAN BE AN ADVANTAGE FOR INTERMITTENT BREATHERS 689

Circulation in Amphibians and in Reptiles Other than Birds 690

Concluding Comments on Vertebrates 692

Invertebrates with Closed Circulatory Systems 692

BOX 25.3 BEARING THE BURDEN OF ATHLETICISM, SORT OF: A SYNTHESIS OF CEPHALOPOD O₂ TRANSPORT 693

Invertebrates with Open Circulatory Systems 694
The crustacean circulatory system provides an example of an open system 695

BOX 25.4 CIRCULATION AND O₂: LESSONS FROM THE INSECT WORLD 696
Open systems are functionally different from closed systems but may be equal in critical ways 697

CHAPTER 26 Oxygen, Carbon Dioxide, and Internal Transport AT WORK: Diving by Marine Mammals 701

Diving Feats and Behavior 702

Types of Dives and the Importance of Method 704

Physiology: The Big Picture 704

The Oxygen Stores of Divers 705
The blood O₂ store tends to be large in diving mammals 705
Diving mammals have high myoglobin concentrations and large myoglobin-bound O₂ stores 706
Diving mammals vary in their use of the lungs as an O₂ store 706
Total O₂ stores never permit dives of maximum duration to be fully aerobic 707

Circulatory Adjustments during Dives 708
Regional vasoconstriction: Much of a diving mammal’s body is cut off from blood flow during forced or protracted dives 708
Diving bradycardia matches cardiac output to the circulatory task 709
Cardiovascular responses are graded in freely diving animals 709
Red blood cells are removed from the blood between dive sequences in some seals 710

BOX 26.1 THE EVOLUTION OF VERTEBRATE CARDIAC AND VASCULAR RESPONSES TO ASPHYXIA 711

Metabolism during Dives 711
The body becomes metabolically subdivided during forced or protracted dives 711
Metabolic limits on dive duration are determined by O₂ supplies, by rates of metabolic O₂ use and lactic acid production, and by tissue tolerances 712

The Aerobic Dive Limit: One of Physiology’s Key Benchmarks for Understanding Diving Behavior 713
Marine mammals exploit multiple means of reducing their metabolic costs while underwater 715
Decompression Sickness 716

Human decompression sickness is usually caused by N₂ absorption from a compressed-air source 716
Breath-hold dives must be repeated many times to cause decompression sickness in humans 717

Marine mammals have been thought—perhaps erroneously—to avoid decompression sickness during deep dives by alveolar collapse 717
Decompression sickness is an unresolved phenomenon 718

A Possible Advantage for Pulmonary O₂ Sequestration in Deep Dives 718

PART VI Water, Salts, and Excretion 721

CHAPTER 27 Water and Salt Physiology Introduction and Mechanisms 723

The Importance of Animal Body Fluids 724
The Relationships among Body Fluids 725
Types of Regulation and Conformity 726
Natural Aquatic Environments 727
Natural Terrestrial Environments 728
Organs of Blood Regulation 731
- The osmotic U/P ratio is an index of the action of the kidneys in osmotic regulation 732
- The effects of kidney function on volume regulation depend on the amount of urine produced 733
- The effects of kidney function on ionic regulation depend on ionic U/P ratios 733

Food and Drinking Water 733
- Salty drinking water may not provide H₂O 734
- Plants and algae with salty tissue fluids pose challenges for herbivores 734
- Air-dried foods contain water 734
- Protein-rich foods can be dehydrating for terrestrial animals 734

Metabolic Water 735
- Metabolic water matters most in animals that conserve water effectively 735
- BOX 27.1 NET METABOLIC WATER GAIN IN KANGAROO RATS 736

Cell-Volume Regulation 737

From Osmolytes to Compatible Solutes: Terms and Concepts 738

CHAPTER 28 Water and Salt Physiology of Animals in Their Environments 741

Animals in Freshwater 742
- Passive water and ion exchanges: Freshwater animals tend to gain water by osmosis and lose major ions by diffusion 742
- Most types of freshwater animals share similar regulatory mechanisms 744
- BOX 28.1 FISH MITOCHONDRIA-RICH CELLS AND THEIR DIVERSITY 747
- A few types of freshwater animals exhibit exceptional patterns of regulation 748
- Why do most freshwater animals make dilute urine? 748

Animals in the Ocean 749
- Most marine invertebrates are isosmotic to seawater 749
- Hagfish are the only vertebrates with blood inorganic ion concentrations that make them isosmotic to seawater 750
- The marine teleost fish are markedly hyposmotic to seawater 750
- BOX 28.2 WHERE WERE VERTEBRATES AT THEIR START? 751
- BOX 28.3 EPITHELIAL NaCl SECRETION IN GILLS, SALT GLANDS, AND RECTAL GLANDS 753
- Some arthropods of saline waters are hyposmotic regulators 754
- Marine reptiles (including birds) and mammals are also hyposmotic regulators 754
- Marine elasmobranch fish are hyperosmotic but hypoionic to seawater 756
- BOX 28.4 THE EVOLUTION OF UREA SYNTHESIS IN VERTEBRATES 757

Animals That Face Changes in Salinity 758
Migratory fish and other euryhaline fish are dramatic and scientifically important examples of hyper-hyposmotic regulators 759
Genomic studies point to greater gene-expression changes in crustaceans than fish 761
Animals undergo change in all time frames in their relations to ambient salinity 761

Responses to Drying of the Habitat in Aquatic Animals 762
BOX 28.5 ANHYDROBIOSIS: LIFE AS NOTHING MORE THAN A MORPHOLOGICAL STATE 763

Animals on Land: Fundamental Physiological Principles 763
A low integumentary permeability to water is a key to reducing evaporative water loss on land 764
Respiratory evaporative water loss depends on the function of the breathing organs and the rate of metabolism 765
An animal's total rate of evaporative water loss depends on its body size and phylogenetic group 766
Excretory water loss depends on the concentrating ability of the excretory organs and the amount of solute that needs to be excreted 768
Terrestrial animals sometimes enter dormancy or tolerate wide departures from homeostasis to cope with water stress 769
The total rates of water turnover of free-living terrestrial animals follow allometric patterns 769

Animals on Land: Case Studies 770
Amphibians occupy diverse habitats despite their meager physiological abilities to limit water losses 770
Xeric invertebrates: Because of exquisite water conservation, some insects and arachnids have only small water needs 772
BOX 28.6 THE STUDY OF PHYSIOLOGICAL EVOLUTION BY ARTIFICIAL SELECTION 773
Xeric vertebrates: Studies of lizards and small mammals help clarify the complexities of desert existence 773
Xeric vertebrates: Some desert birds have specialized physiological properties 775

Control of Water and Salt Balance in Terrestrial Animals 776

CHAPTER 29
Kidneys and Excretion
(with Notes on Nitrogen Excretion) 779

Basic Mechanisms of Kidney Function 780
Primary urine is introduced into kidney tubules by ultrafiltration or secretion 780

The predominant regulatory processes in kidney function: After primary urine forms, solutes and water are recovered from it for return to the blood, and some solutes are added from the blood 783

Urine Formation in Amphibians 783
The proximal convoluted tubule reabsorbs much of the filtrate—returning it to the blood plasma—without changing the osmotic pressure of the tubular fluid 784
The distal convoluted tubule can differentially reabsorb water and solutes, thereby regulating the ratio of water to solutes in the body fluids 785
BOX 29.1 QUANTITY VERSUS CONCENTRATION 785
BOX 29.2 METHODS OF STUDY OF KIDNEY FUNCTION: MICROPUNCTURE AND CLEARANCE 786
ADH exerts an elaborate pattern of control over nephron function 787
The bladder functions in urine formation in amphibians 787
The amphibian excretory system has mechanisms to promote excretion of urea 787

Urine Formation in Mammals 788
The nephrons, singly and collectively, give the mammalian kidney a distinctive structure 788
Comparative anatomy points to a role for the loops of Henle in concentrating the urine 790
Countercurrent multiplication is the key to producing concentrated urine 792
BOX 29.3 COUNTERCURRENT MULTIPLIERS VERSUS COUNTERCURRENT EXCHANGERS 793
The regulatory roles of the kidney tubules in overview: the concentrating and diluting kidney and the control of transitions 797
Modern molecular and genomic methods create new frontiers in the study of kidney function 801

Urine Formation in Other Vertebrates 802
Freshwater and marine teleost fish differ in nephron structure and function 802
The reptiles other than birds have nephrons like those of amphibians, but birds have some mammalian-type nephrons 803

Urine Formation in Decapod Crustaceans 804

Urine Formation in Molluscs 805

Urine Formation in Insects 805
The Malpighian tubules form and sometimes modify the primary urine 806
The hindgut modulates urine volume and composition in regulatory ways 806

Nitrogen Disposition and Excretion 809
Ammonotelism is the primitive state 809
Urea is more costly to synthesize but less toxic than ammonia 810
Uric acid and related compounds remove nitrogen from solution 811

BOX 29.4 WHY ARE MAMMALS NOT URICOTELIC? 812

CHAPTER 30
Water, Salts, and Excretion
AT WORK: Mammals of Deserts and Dry Savannas 815

Desert and Dry-Savanna Environments 815

The Relations of Animals to Water 816

Large body size is a physiological advantage in terms of water costs 816

Coexisting species are diverse in their relations to drinking water 818

Water conflicts threaten animals and people 819

All species of large herbivores require considerable amounts of preformed water 821

Water and food resources in the deserts and dry savannas are often complex 822

The Dramatic Adaptations of Particular Species 824

Oryxes represent the pinnacle of desert survival 824

Grant’s and Thomson’s gazelles differ in their relations to water 826

The sand gazelle is drinking-water-independent in hyperarid deserts 827

The dromedary camel does not store water, but conserves it and tolerate profound dehydration 827

APPENDIX A

The Système International and Other Units of Measure A-2

APPENDIX B

Prefixes Indicating Orders of Magnitude A-4

APPENDIX C

Gases at Standard Temperature and Pressure A-5

APPENDIX D

Fitting Lines to Data A-6

APPENDIX E

Logarithms A-8

APPENDIX F

Exponential and Allometric Equations A-10

APPENDIX G

Phylogenetically Independent Contrasts A-12

APPENDIX H

Mitosis and Meiosis A-15

APPENDIX I

The Standard Amino Acids A-18

APPENDIX J

Basic Physics Terms A-19

APPENDIX K

Summary of Major Bloodborne Hormones in Mammals A-21

Glossary G-1

Photograph Credits P-1

Figure and Table Citations C-1

Additional References R-1

Index I-1