Chapter 1 Early Foundations of the Ocean Sciences 2

The Early Ocean Voyagers 3
The Principles of Navigation 5
The problem of scale 5
The problem of locating one’s position 7
Dealing with Spherical Geometry of the Earth 7
Latitude 7
Box 1A Degrees of Latitude in terms of Miles 9
Longitude 10
Box 1B Longitude and Time 12
Coming Out of the Dark Ages: The Renaissance Europeans 13
Box 1C The Magnetic Compass 14
Post-Renaissance Ocean Exploration 15
Box 1D The Search for the Northwest Passage 19
The Birth of Oceanography 20
The Challenger expedition 20
A note on technology and sampling problems of the times 22
Oceanography and Marine Biology: Late Nineteenth to Early Twentieth Century 25
Fridtjof Nansen 25
Growth of marine research 27

Chapter 2 Origins and Connections: Science, the Universe, Earth, and Life 32

What Is Science? 33
Science and technology 33
Ways of doing science 36
On “seeing” in science 37

Origins: Where Did the Earth and Its Oceans Come From? 38
The “Big Bang” 38
Box 2A Red Shift 40
Early formation of planet Earth 43
Origins of Earth’s water 45
Water elsewhere in the Universe 46
Earth’s Internal Structure 48
Chemical characteristics of Earth’s interior 48
Physical characteristics of Earth’s interior 49
An Introduction to Geophysics 50
Heat sources and heat flow 50
Concepts of mass, weight, density, and buoyancy 51
Seismic waves: Two types 52
Refraction of seismic waves 53
Passage of seismic waves through the Earth 54
The Origin of Life 56

Chapter 3 The Ocean Floor: Its Formation and Evolution 62

Box 3A Scientific Revolutions 63
Continental Drift 64
An emerging suspicion 64
Early evidence 64
A modern history of an old idea 66
Evidence begins to accumulate 71
Box 3B Seismographs and the Richter Magnitude Scale 73
Box 3C Satellite Altimetry 76
Paleomagnetism: The final proof? 80
Box 3D Paleomagnetism and Reversal of the Earth’s Magnetic Field 82
A unifying theory of plate tectonics 84
Filling in the details 88
Convection currents in the mantle: Further evidence 88
Tectonic plate boundaries 90
Other marine geological features 94
Contents

Marine Sediments 98
- Sediment sizes and dynamics 99
- Types and origins of sediments 100

Box 3E The Hjulstrom Diagram 101
- Distribution of marine sediments 107

Box 3F Methods of Studying Marine Sediments 108

Chapter 4 Water: Its Chemical and Physical Properties 112

Basic Chemistry: Chemical Bonds 113
- Box 4A Atoms and Common Sense 115

Physical-Chemical Properties of Water 118
- Water’s high surface tension 118
- Water’s great dissolving power 118
- Water’s liquid form 119
- Water’s high heat capacity 120
- Water’s phases: Liquid, solid, and gas 123
- Water’s latent heat of melting and evaporation 124
- Water’s transparency to light 126

Salinity 126
- Distribution of salt in the sea 128
- Determining salinity 129

Box 4B Different Salinities in Different Oceans 131

Density 132
- Temperature effects on density 132
- Salinity effects on density 134
- Ice 134

Properties of Salt Water 136
- Increasing salinity decreases heat capacity 136
- Increasing salinity increases density 136
- Increasing salinity lowers the temperature of maximum density 136
- Increasing salinity depresses the freezing point 137

Box 4C Salt and the Surface Melting Effect 139
- Increasing pressure increases density 140
- Combined effects of temperature and salinity on density 140

Box 4D A Word about Nomenclature 142

Vertical Structure in the Ocean 142
- The vertical structure of the ocean and the propagation of sound waves 143

Chapter 5 Atmospheric Circulation and Ocean Currents 150

Light in the Sea 151

Box 5A Beer’s Law \(I = I_0 e^{-kz} \) 153

Box 5B How to Measure Light Attenuation 155

Atmospheric Circulation 155
- Air 156
- Density of air and atmospheric pressure 156

Box 5C Avogadro’s Number 157
- Solar heating of the Earth and atmosphere 160
- The Coriolis effect 163
- Global atmospheric circulation and the effect of Coriolis 167

Box 5D Mathematical Derivation of the Coriolis Effect on a Baseball 168

Box 5E The Jet Streams 171
- Smaller-scale patterns (weather) 171

Box 5F Santa Ana Winds 174

Box 5G From Tropical Disturbance to Hurricane 176

Ocean Circulation 178
- Ekman currents 179
- The major ocean gyres 180
- Western Boundary Currents 182
- Equatorial currents 183

Box 5H The Gulf Stream 183
- Density-driven thermohaline circulation 185

Box 5I Measuring Ocean Currents 188

Chapter 6 Waves and Tides 192

The Basics of Ocean Waves 193
- Capillary waves 194
- Surface gravity waves 195

Box 6A The Speed of Ocean Waves 198
- Seas and swells 198
- Formation and evolution of wind waves 199
- Surf 203
- Wave interference 204
- Wave refraction and diffraction, and longshore currents 206
- Seiches 207
- Tsunami (or seismic sea waves) 208
- Internal waves 210
Tides 210
Understanding the forces at work 212
Box 6B The Tide-Generating Forces 216
Combined influences of the Sun and Moon 217
Tides in ocean basins 218
Tides in the Gulf of Maine and the Bay of Fundy 220
The importance of tides 222

Chapter 7 Introduction to Life in the Sea 226

The Basics of Marine Biology: Photosynthesis and Respiration 227
Box 7A Photosynthesis and Respiration: The Basics 230
Box 7B Important Biologically Mediated Chemical Reactions in the Oceans 231

Nutrients and Limiting Factors 232
Box 7C The Difference between Nutrients and Primary Production on Land and in the Ocean 233

Biological Production in the Oceans 233
The phosphorus cycle 234
The nitrogen cycle 235
Box 7D Nitrogen and Phosphorus Limitation in the Sea and in Freshwater 235
Upwelling 238
Box 7E Measuring Primary Production 241
Winter convective mixing and seasonal vertical stratification 241
The spring phytoplankton bloom 242
Box 7F Winter Cooling and Sinking 243
Box 7G The Spectacular Spring Bloom 245

Food Chains and Food Webs 246

Factors Controlling the Distribution of Marine Organisms 249
Distributions with depth 249
Box 7H Pressure Effects on Air Supply for a Scuba Diver 252
Distributions with latitude 253
Distributions with salinity: Distance from shore 254

Taxonomy of Marine Organisms 255
Box 7I Modern Taxonomic Structure 257

Chapter 8 The Primary Producers 260

The Phytoplankton 261
The Archaea 263
The Bacteria 263
The eukaryotic phytoplankton 267
Box 8A Plankton Nomenclature Based on Size 268
Ecological challenges faced by phytoplankton: Light and nutrients 277
Methods of studying phytoplankton 279
Harmful algal blooms and “red tides” 281

The Macroalgae (the Seaweeds) 286
The green algae 287
The red algae 288
The brown algae 289

Seagrasses 291

Chapter 9 The Zooplankton 296

The Meroplankton 297
The Holoplankton 301
The microzooplankton 301
Box 9A The Microbial Loop 303
The crustacean zooplankton 304
Box 9B Diatoms, Copepods, and Teratogenesis 311
Planktonic molluscs 313
The ctenophores 318
The chaetognaths 319
The appendicularians and salps 320
The ichthyoplankton 320

Chapter 10 Marine Invertebrates 324

The Benthos 327
The sponges 327
Sea anemones and corals 328
Bryozoa, phoronids, and brachiopods 331
The platyhelminthes, nemertians, and nematodes 332
Chapter 11 The Fishes 360

The Jawless Fishes 362
Hagfishes 363
Lampreys 363

The Cartilagenous Fishes 364
Chimaeras 365
Elasmobranchs: Sharks, skates, and rays 365

The Bony Fishes 370
Box 11A The Coelacanth: A Fish Believed To Be Extinct Turned Out Not To Be, after All 370

General Biology of Marine Fishes 372
Respiration 372
Osmoregulation 374
Fish propulsion 374
Box 11B A Word on “Top” Swimming Speeds in Fishes 375
Shoaling and schooling behavior 377
Fish feeding 378
Fish reproduction 380
Fish growth and mortality 381
Fish migrations 383

Box 11C Determining the Age of a Fish Using Otoliths 385

The Field of Ichthyology 387

Chapter 12 Marine Environments 390

The Intertidal Zone 391
The rocky intertidal zone 394
The soft-bottom intertidal zone 398

Estuaries 401
Salt Marshes 405
Mangrove Forests 407

Chapter 13 Marine Reptiles, Birds, and Mammals 420

Marine Reptiles 421
Sea snakes 422
Marine iguanas 422
Saltwater crocodiles 423
Sea turtles 423

Sea Birds 425
General characteristics 425
Surface feeders 427
Pursuit feeders 427
Plunge divers 429
Scavengers, predators, and others 430
Shorebirds, raptors, and sea ducks 432

Marine Mammals 433
The sea otter 433
The sirenians 435
The pinnipeds 437
Fur seals and sea lions 437
Walruses 438
The true seals 439
Cetaceans: The whales, dolphins and porpoises 440
Cetacean feeding 441
Whale breathing 443
Deep diving 444
Swimming speed 445
Box 13A “The Bends” and Deep-Diving Marine Mammals 446
Echolocation 446
Whale migrations 447
Cetacean intelligence 447

Whaling 449
Some case histories 451
Chapter 14
Marine Fisheries and Aquaculture 458

Fisheries Trophodynamics 460
A History of Commercial Fisheries 462
Types of fishing gear 464
Principles of Fishery Science 470
Growth and mortality 470
Maximum sustainable yield 473
Recruitment variability 474
Current Status and Management of Fisheries 477
Aquaculture 479

Chapter 15
Human Impacts 484

Marine Pollution 486
Nutrient enrichment and coastal eutrophication 486
Shipping, oil pollution, and nonindigenous species 491
Solid waste 494
Global Climate Change 496
The greenhouse effect 497
The evidence 499
Sea level 503

Appendix A: Satellite Remote Sensing A–1

Appendix B: El Niño and La Niña A–5

Appendix C: Exploring the Deep, Dark Ocean A–9

Glossary G–1
Illustration Credits IC–1
Index I–1