Table of Contents

PREFACE TO THE FOURTH EDITION XI
PREFACE TO THE THIRD EDITION XI
PREFACE TO THE SECOND EDITION XIII
PREFACE TO THE FIRST EDITION XIV
TO THE STUDENT XX

Chapter 1: Exponential Population Growth 1

MODEL PRESENTATION AND PREDICTIONS 2
 Elements of Population Growth 2
 Projecting Population Size 6
 Calculating Doubling Time 6
MODEL ASSUMPTIONS 9
MODEL VARIATIONS 11
 Continuous versus Discrete Population Growth 11
 Environmental Stochasticity 13
 Demographic Stochasticity 16
EMPIRICAL EXAMPLES 19
 Pheasants of Protection Island 19
 Grizzly Bears of Yellowstone National Park 20
PROBLEMS 23

Chapter 2: Logistic Population Growth 25

MODEL PRESENTATION AND PREDICTIONS 26
 Density Dependence 26
 Carrying Capacity 28
MODEL ASSUMPTIONS 30
MODEL VARIATIONS 32
 Time Lags 32
 Discrete Population Growth 35
 Random Variation in Carrying Capacity 38
 Periodic Variation in Carrying Capacity 38

© Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.
Chapter 3: Age-Structured Population Growth

MODEL PRESENTATION AND PREDICTIONS
- Exponential Growth with Age Structure
- Notation for Ages and Age Classes
- The Fecundity Schedule \([b(x)]\)
- Fecundity Schedules in Nature
- The Survivorship Schedule \([l(x)]\)
- Survival Probability \([g(x)]\)
- Survivorship Schedules in Nature
- Calculating Net Reproductive Rate \((R_0)\)
- Calculating Generation Time \((G)\)
- Calculating Intrinsic Rate of Increase \((r)\)
- Describing Population Age Structure
- Calculating Survival Probabilities for Age Classes \((P_i)\)
- Calculating Fertilities for Age Classes \((F_i)\)
- The Leslie Matrix
- Stable and Stationary Age Distributions

MODEL ASSUMPTIONS

MODEL VARIATIONS
- Derivation of the Euler Equation
- Reproductive Value
- Life History Strategies
- Stage- and Size-Structured Population Growth

Chapter 4: Metapopulation Dynamics

MODEL PRESENTATION AND PREDICTIONS
- Metapopulations and Extinction Risk
- A Model of Metapopulation Dynamics

MODEL ASSUMPTIONS
Chapter 5: Competition

Chapter 6: Predation
Population Cycles of Hare and Lynx 147
Population Cycles of Red Grouse 148
PROBLEMS 153

Chapter 7: Island Biogeography 155

MODEL PRESENTATION AND PREDICTIONS 156
 The Species–Area Relationship 156
 The Habitat Diversity Hypothesis 158
 The Equilibrium Model of Island Biogeography 159

MODEL ASSUMPTIONS 165

MODEL VARIATIONS 166
 Nonlinear Immigration and Extinction Curves 166
 Area and Distance Effects 167
 The Rescue Effect 168
 The Target Effect 169
 The Passive Sampling Model 170

EMPIRICAL EXAMPLES 171
 Insects of Mangrove Islands 171
 Breeding Birds of Eastern Wood 173
 Breeding Birds of the Pymatuning Lake Islands 175

PROBLEMS 177

Chapter 8: Succession 179

MODEL PRESENTATION AND PREDICTIONS 181
 Three Verbal Models of Succession 181
 Matrix Models of Succession 183
 Setting the Stages 183
 Specifying the Time Step 184
 Constructing the Stage Vector 184
 Constructing the Transition Matrix 184
 Loop Diagrams 185
 Projecting Community Change 186
 Determining the Equilibrium 187
 Stage Vectors and Transition Matrices: Two Interpretations 188

MODEL ASSUMPTIONS 190

MODEL VARIATIONS 191
 Successional Models Revisited 191
 Facilitation Model 191
 Inhibition Model 192
 Tolerance Model 194
Chapter 9: Measuring Species Diversity

INTRODUCTION

- A Walk through the Woods

THE ORGANIZATION OF BIODIVERSITY DATA

- The Candy Jar of Diversity
- Carabid Beetles in Pine Plantations

RAREFACTION

- Extending the Rarefaction Curve
- Assumptions of Rarefaction
- Individual- and Sample-Based Rarefaction
- Calculating the Rarefaction Curve and Its Variance
- Species Richness and Species Density

ASYMPTOTIC SPECIES RICHNESS ESTIMATORS

SPECIES EVENNESS

SUMMARY

PROBLEMS

APPENDIX

- Constructing a Population Model
- The Derivative: The Velocity of a Population
- Modeling Population Growth
- Solving for the Equilibrium
- Analyzing the Stability of the Equilibrium
- The Integral: Projecting Population Growth

SOLUTIONS TO PROBLEMS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>237</td>
</tr>
<tr>
<td>2</td>
<td>239</td>
</tr>
<tr>
<td>3</td>
<td>242</td>
</tr>
<tr>
<td>4</td>
<td>244</td>
</tr>
<tr>
<td>5</td>
<td>246</td>
</tr>
<tr>
<td>6</td>
<td>247</td>
</tr>
<tr>
<td>7</td>
<td>249</td>
</tr>
<tr>
<td>8</td>
<td>251</td>
</tr>
<tr>
<td>9</td>
<td>253</td>
</tr>
</tbody>
</table>

GLOSSARY

LITERATURE CITED

INDEX